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PREFACE

This book is about useful methods for data mining and business analytics. It is
written for readers who want to apply these methods so that they can learn about
their processes and solve their problems. My objective is to provide a thorough
discussion of the most useful data-mining tools that goes beyond the typical “black
box” description, and to show why these tools work.

Powerful, accurate, and flexible computing software is needed for data mining,
and Excel is of little use. Although excellent data-mining software is offered by
various commercial vendors, proprietary products are usually expensive. In this
text, I use the R Statistical Software, which is powerful and free. But the use of
R comes with start-up costs. R requires the user to write out instructions, and the
writing of program instructions will be unfamiliar to most spreadsheet users. This is
why I provide R sample programs in the text and on the webpage that is associated
with this book. These sample programs should smooth the transition to this very
general and powerful computer environment and help keep the start-up costs to
using R small.

The text combines explanations of the statistical foundation of data mining with
useful software so that the tools can be readily applied and put to use. There are
certainly better books that give a deeper description of the methods, and there are
also numerous texts that give a more complete guide to computing with R. This
book tries to strike a compromise that does justice to both theory and practice,
at a level that can be understood by the MBA student interested in quantitative
methods. This book can be used in courses on data mining in quantitative MBA
programs and in upper-level undergraduate and graduate programs that deal with
the analysis and interpretation of large data sets. Students in business, the social
and natural sciences, medicine, and engineering should benefit from this book.
The majority of the topics can be covered in a one semester course. But not every
covered topic will be useful for all audiences, and for some audiences, the coverage
of certain topics will be either too advanced or too basic. By omitting some topics
and by expanding on others, one can make this book work for many different
audiences.

Certain data-mining applications require an enormous amount of effort to just
collect the relevant information, and in such cases, the data preparation takes a
lot more time than the eventual modeling. In other applications, the data collection
effort is minimal, but often one has to worry about the efficient storage and retrieval
of high volume information (i.e., the “data warehousing”). Although it is very
important to know how to acquire, store, merge, and best arrange the information,

ix
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x PREFACE

this text does not cover these aspects very deeply. This book concentrates on the
modeling aspects of data mining.

The data sets and the R-code for all examples can be found on the webpage that
accompanies this book (http://www.biz.uiowa.edu/faculty/jledolter/DataMining).
Supplementary material for this book can also be found by entering ISBN
9781118447147 at booksupport.wiley.com. You can copy and paste the code into
your own R session and rerun all analyses. You can experiment with the software
by making changes and additions, and you can adapt the R templates to the
analysis of your own data sets. Exercises and several large practice data sets are
given at the end of this book. The exercises will help instructors when assigning
homework problems, and they will give the reader the opportunity to practice the
techniques that are discussed in this book. Instructions on how to best use these
data sets are given in Appendix A.

This is a first edition. Although I have tried to be very careful in my writing and
in the analyses of the illustrative data sets, I am certain that much can be improved.
I would very much appreciate any feedback you may have, and I encourage you
to write to me at johannes-ledolter@uiowa.edu. Corrections and comments will be
posted on the book’s webpage.
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CHAPTER 1

Introduction

Today’s statistics applications involve enormous data sets: many cases (rows of
a data spreadsheet, with a row representing the information on a studied case)
and many variables (columns of the spreadsheet, with a column representing the
outcomes on a certain characteristic across the studied cases). A case may be a
certain item such as a purchase transaction, or a subject such as a customer or a
country, or an object such as a car or a manufactured product. The information that
we collect varies across the cases, and the explanation of this variability is central
to the tools that we study in this book. Many variables are typically collected on
each case, but usually only a few of them turn out to be useful. The majority of
the collected variables may be irrelevant and represent just noise. It is important
to find those variables that matter and those that do not.

Here are a few types of data sets that one encounters in data mining. In marketing
applications, we observe the purchase decisions, made over many time periods, of
thousands of individuals who select among several products under a variety of
price and advertising conditions. Social network data contains information on the
presence of links among thousands or millions of subjects; in addition, such data
includes demographic characteristics of the subjects (such as gender, age, income,
race, and education) that may have an effect on whether subjects are “linked” or
not. Google has extensive information on 100 million users, and Facebook has data
on even more. The recommender systems developed by firms such as Netflix and
Amazon use available demographic information and the detailed purchase/rental
histories from millions of customers. Medical data sets contain the outcomes of
thousands of performed procedures, and include information on their characteristics
such as the type of procedure and its outcome, and the location where and the time
when the procedure has been performed.

While traditional statistics applications focus on relatively small data sets, data
mining involves very large and sometimes enormous quantities of information.
One talks about megabytes and terabytes of information. A megabyte represents
a million bytes, with a byte being the number of bits needed to encode a single
character of text. A typical English book in plain text format (500 pages with 2000

Data Mining and Business Analytics with R, First Edition. Johannes Ledolter.
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2 INTRODUCTION

characters per page) amounts to about 1 MB. A terabyte is a million megabytes,
and an exabyte is a million terabytes.

Data mining attempts to extract useful information from such large data sets.
Data mining explores and analyzes large quantities of data in order to discover
meaningful patterns. The scale of a typical data mining application, with its large
number of cases and many variables, exceeds that of a standard statistical inves-
tigation. The analysis of millions of cases and thousands of variables also puts
pressure on the speed that is needed to accomplish the search and modeling steps
of the typical data mining application. This is why researchers refer to data min-
ing as statistics at scale and speed. The large scale (lots of available data) and
the requirements on speed (solutions are needed quickly) create a large demand for
automation. Data mining uses a combination of pattern-recognition rules, statistical
rules, as well as rules drawn from machine learning (an area of computer science).

Data mining has wide applicability, with applications in intelligence and security
analysis, genetics, the social and natural sciences, and business. Studying which
buyers are more likely to buy, respond to an advertisement, declare bankruptcy,
commit fraud, or abandon subscription services are of vital importance to business.

Many data mining problems deal with categorical outcome data (e.g., no/yes
outcomes), and this is what makes machine learning methods, which have their
origins in the analysis of categorical data, so useful. Statistics, on the other hand,
has its origins in the analysis of continuous data. This makes statistics especially
useful for correlation-type analyses where one sifts through a large number of
correlations to find the largest ones.

The analysis of large data sets requires an efficient way of storing the data so
that it can be accessed easily for calculations. Issues of data warehousing and how
to best organize the data are certainly very important, but they are not emphasized
in this book. The book focuses on the analysis tools and targets their statistical
foundation.

Because of the often enormous quantities of data (number of cases/replicates),
the role of traditional statistical concepts such as confidence intervals and statistical
significance tests is greatly reduced. With large data sets, almost any small differ-
ence becomes significant. It is the problem of overfitting models (i.e., using more
explanatory variables than are actually needed to predict a certain phenomenon)
that becomes of central importance. Parsimonious representations are important as
simpler models tend to give more insight into a problem. Large models overfit-
ted on training data sets usually turn out to be extremely poor predictors in new
situations as unneeded predictor variables increase the prediction error variance.
Furthermore, overparameterized models are of little use if it is difficult to collect
data on predictor variables in the future. Methods that help avoid such overfitting
are needed, and they are covered in this book. The partitioning of the data into
training and evaluation (test) data sets is central to most data mining methods. One
must always check whether the relationships found in the training data set will
hold up in the future.

Many data mining tools deal with problems for which there is no designated
response that one wants to predict. It is common to refer to such analysis as
unsupervised learning. Cluster analysis is one example where one uses feature
(variable) data on numerous objects to group the objects (i.e., the cases) into a
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INTRODUCTION 3

smaller number of groups (also called clusters). Dimension reduction applications
are other examples for such type of problems; here one tries to reduce the many
features on an object to a manageable few. Association rules also fall into this
category of problems; here one studies whether the occurrence of one feature is
related to the occurrence of others. Who would not want to know whether the sales
of chips are being “lifted” to a higher level by the concurrent sales of beer?

Other data mining tools deal with problems for which there is a designated
response, such as the volume of sales (a quantitative response) or whether someone
buys a product (a categorical response). One refers to such analysis as supervised
learning. The predictor variables that help explain (predict) the response can be
quantitative (such as the income of the buyer or the price of a product) or categorical
(such as the gender and profession of the buyer or the qualitative characteristics
of the product such as new or old). Regression methods, regression trees, and
nearest neighbor methods are well suited for problems that involve a continuous
response. Logistic regression, classification trees, nearest neighbor methods, dis-
criminant analysis (for continuous predictor variables) and naı̈ve Bayes methods
(mostly for categorical predictor variables) are well suited for problems that involve
a categorical response.

Data mining should be viewed as a process. As with all good statistical analyses,
one needs to be clear about the purpose of the analysis. Just to “mine data” without
a clear purpose, without an appreciation of the subject area, and without a modeling
strategy will usually not be successful. The data mining process involves several
interrelated steps:

1. Efficient data storage and data preprocessing steps are very critical to the
success of the analysis.

2. One needs to select appropriate response variables and decide on the number
of variables that should be investigated.

3. The data needs to be screened for outliers, and missing values need to
be addressed (with missing values either omitted or appropriately imputed
through one of several available methods).

4. Data sets need to be partitioned into training and evaluation data sets. In very
large data sets, which cannot be analyzed easily as a whole, data must be
sampled for analysis.

5. Before applying sophisticated models and methods, the data need to be visu-
alized and summarized. It is often said that a picture is worth a 1000 words.
Basic graphs such as line graphs for time series, bar charts for categori-
cal variables, scatter plots and matrix plots for continuous variables, box
plots and histograms (often after stratification on useful covariates), maps for
displaying correlation matrices, multidimensional graphs using color, trellis
graphs, overlay plots, tree maps for visualizing network data, and geo maps
for spatial data are just a few examples of the more useful graphical displays.
In constructing good graphs, one needs to be careful about the right scaling,
the correct labeling, and issues of stratification and aggregation.

6. Summary of the data involves the typical summary statistics such as mean,
percentiles and median, standard deviation, and correlation, as well as more
advanced summaries such as principal components.
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4 INTRODUCTION

7. Appropriate methods from the data mining tool bag need to be applied.
Depending on the problem, this may involve regression, logistic regression,
regression/classification trees, nearest neighbor methods, k -means clustering,
and so on.

8. The findings from these models need to be confirmed, typically on an eval-
uation (test or holdout) data set.

9. Finally, the insights one gains from the analysis need to be implemented. One
must act on the findings and spring to action. This is what W.E. Deming
had in mind when he talked about process improvement and his Deming
(Shewhart) wheel of “plan, do, check, and act” (Ledolter and Burrill, 1999).

Some data mining applications require an enormous amount of effort to just col-
lect the relevant information. For example, an investigation of Pre-Civil War court
cases of Missouri slaves seeking their freedom involves tedious study of handwrit-
ten court proceedings and Census records, electronic scanning of the records, and
the use of character-recognition software to extract the relevant characteristics of
the cases and the people involved. The process involves double and triple check-
ing unclear information (such as different spellings, illegible entries, and missing
information), selecting the appropriate number of variables, categorizing text infor-
mation, and deciding on the most appropriate coding of the information. At the
end, one will have created a fairly good master list of all available cases and
their relevant characteristics. Despite all the diligent work, there will be plenty of
missing information, information that is in error, and way too many variables and
categories than are ultimately needed to tell the story behind the judicial process
of gaining freedom.

Data preparation often takes a lot more time than the eventual modeling. The
subsequent modeling is usually only a small component of the overall effort; quite
often, relatively simple methods and a few well-constructed graphs can tell the
whole story. It is the creation of the master list that is the most challenging task.
The steps that are involved in the construction of the master list in such problems
depend heavily on the subject area, and one can only give rough guidelines on how
to proceed. It is also difficult to make this process automatic. Furthermore, even
if some of the “data cleaning” steps can be made automatic, the investigator must
constantly check and question any adjustments that are being made. Great care,
lots of double and triple checking, and much common sense are needed to create a
reliable master list. But without a reliable master list, the findings will be suspect,
as we know that wrong data usually lead to wrong conclusions. The old saying
“garbage in–garbage out” also applies to data mining.

Fortunately many large business data sets can be created almost automatically.
Much of today’s business data is collected for transactional purposes, that is, for
payment and for shipping. Examples of such data sets are transactions that originate
from scanner sales in super markets, telephone records that are collected by mobile
telephone providers, and sales and rental histories that are collected by companies
such as Amazon and Netflix. In all these cases, the data collection effort is minimal,
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INTRODUCTION 5

even though companies have to worry about the efficient storage and retrieval of
the information (i.e., the “data warehousing”).

Credit card companies collect information on purchases; telecom companies col-
lect information on phone calls such as their timing, length, origin, and destination;
retail stores have developed automated ways of collecting information on their sales
such as the volume purchased and the price at which products are bought. Super-
markets are now the source of much excellent data on the purchasing behavior of
individuals. Electronic scanners keep track of purchases, prices, and the presence
of promotions. Loyalty programs of retail chains and frequent-flyer programs make
it possible to link the purchases to the individual shopper and his/her demographic
characteristics and preferences. Innovative marketing firms combine the customer’s
purchase decisions with the customer’s exposure to different marketing messages.
As early as the 1980s, Chicago’s IRI (Information Resources Incorporated, now
Symphony IRI) contracted with television cable companies to vary the advertise-
ments that were sent to members of their household panels. They knew exactly
who was getting which ad and they could track the panel members’ purchases at
the store. This allowed for a direct way of assessing the effectiveness of marketing
interventions; certainly much more direct than the diary-type information that had
been collected previously. At present, companies such as Google and Facebook run
experiments all the time. They present their members with different ads and they
keep track who is clicking on the advertised products and whether the products are
actually being bought.

Internet companies have vast information on customer preferences and they
use this for targeted advertising; they use recommender systems to direct their ads
to areas that are most profitable. Advertising related products that have a good
chance of being bought and “cross-selling” of products become more and more
important. Data from loyalty programs, from e-Bay auction histories, and from
digital footprints of users clicking on Internet webpages are now readily available.
Google’s “Flu tracker” makes use of the webpage clicks to develop a tool for the
early detection of influenza outbreaks; Amazon and Netflix use the information
from their shoppers’ previous order histories without ever meeting them in person,
and they use the information from previous order histories of their users to develop
automatic recommender systems. Credit risk calculations, business sentiment
analysis, and brand image analysis are becoming more and more important.

Sports teams use data mining techniques to assemble winning teams; see the
success stories of the Boston Red Sox and the Oakland Athletics. Moneyball, a
2011 biographical sports drama film based on Michael Lewis’s 2003 book of the
same name, is an account of the Oakland Athletics baseball team’s 2002 season
and their general manager Billy Beane’s attempts to assemble a competitive team
through data mining and business analytics.

It is not only business applications of data mining that are important; data mining
is also important for applications in the sciences. We have enormous data bases
on drugs and their side effects, and on medical procedures and their complication
rates. This information can be mined to learn which drugs work and under which
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6 INTRODUCTION

conditions they work best; and which medical procedures lead to complications
and for which patients.

Business analytics and data mining deal with collecting and analyzing data for
better decision making in business. Managers and business students can gain a com-
petitive advantage through business analytics and data mining. Most tools and meth-
ods for data mining discussed in this book have been around for a very long time.
But several developments have come together over the past few years, making the
present period a perfect time to use these methods for solving business problems.

1. More and more data relevant for data mining applications are now being
collected.

2. Data is being warehoused and is now readily available for analysis. Much
data from numerous sources has already been integrated, and the data is
stored in a format that makes the analysis convenient.

3. Computer storage and computer power are getting cheaper every day, and
good software is available to carry out the analysis.

4. Companies are interested in “listening” to their customers and they now
believe strongly in customer relationship management. They are interested
in holding on to good customers and getting rid of bad ones. They embrace
tools and methods that give them this information.

This book discusses the modeling tools and the methods of data mining. We
assume that one has constructed the relevant master list of cases and that the data
is readily available. Our discussion covers the last 10–20% of effort that is needed
to extract and model meaningful information from the raw data. A model is a
simplified description of the process that may have generated the data. A model
may be a mathematical formula, or a computer program. One must remember,
however, that no model is perfect, and that all models are merely approximations.
But some of these approximations will turn out to be useful and lead to insights.
One needs to become a critical user of models. If a model looks too good to be
true, then it generally is. Models need to be checked, and we emphasized earlier
that models should not be evaluated on the data that had been used to build them.
Models are “fine-tuned” to the data of the training set, and it is not obvious whether
this good performance carries over to other data sets.

In this book, we use the R Statistical Software (Version 15 as of June 2012). It
is powerful and free. One may search for the software on the web and download the
system. R is similar to Matlab and requires the user to write out simple instructions.
The writing of (program) instructions will be unfamiliar to a spreadsheet user, and
there will be startup costs to using R. However, the R sample programs in this
book and their listing on the book’s webpage should help with the transition to this
very general and powerful computer environment.

REFERENCE
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CHAPTER 2

Processing the Information and
Getting to Know Your Data

In this chapter we analyze three data sets and illustrate the steps that are needed
for preprocessing the data. We consider (i) the 2006 birth data that is used in the
book R in a Nutshell: A Desktop Quick Reference (Adler, 2009), (ii) data on the
contributions to a Midwestern private college (Ledolter and Swersey, 2007), and
(iii) the orange juice data set taken from P. Rossi’s bayesm package for R that
was used earlier in Montgomery (1987). The three data sets are of suitable size
(427,323 records and 13 variables in the 2006 birth data set; 1230 records and
11 variables in the contribution data set; and 28,947 records and 17 variables in
the orange juice data set). The data sets include both continuous and categorical
variables, have missing observations, and require preprocessing steps before they
can be subjected to the appropriate statistical analysis and modeling. We use these
data sets to illustrate how to summarize the available information and how to
obtain useful graphical displays. The initial arrangement of the data is often not
very convenient for the analysis, and the information has to be rearranged and
preprocessed. We show how to do this within R.

All data sets and the R programs for all examples in this book are listed on the
webpage that accompanies this book (http://www.biz.uiowa.edu/faculty/jledolter/
DataMining). I encourage readers to copy and paste the R programs into their own
R sessions and check the results. Having such templates available for the analysis
helps speed up the learning curve for R. It is much easier to learn from a sample
program than to piece together the R code from first principles. It is the author’s
experience that even novices catch on quite fast. It may happen that at some time
in the future certain R functions and packages become obsolete and are no longer
available. Readers should then look for adequate replacements. The R function
“help” can be used to get information on new functions and packages.

2.1 EXAMPLE 1: 2006 BIRTH DATA

We consider the 2006 birth data set that is used in the book R In a Nutshell: A
Desktop Quick Reference (Adler, 2009). The data set births2006.smpl consists of

Data Mining and Business Analytics with R, First Edition. Johannes Ledolter.
 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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8 PROCESSING THE INFORMATION AND GETTING TO KNOW YOUR DATA

427,323 records and 13 variables, including the day of birth according to the month
and the day of week (DOB_MM, DOB_WK), the birth weight of the baby (DBWT)
and the weight gain of the mother during pregnancy (WTGAIN), the sex of the
baby and its APGAR score at birth (SEX and APGAR5), whether it was a single or
multiple birth (DPLURAL), and the estimated gestation age in weeks (ESTGEST).
We list below the information for the first five births.

## Install packages from CRAN; use any USA mirror
library(lattice)
library(nutshell)
data(births2006.smpl)
births2006.smpl[1:5,]

DOB_MM DOB_WK MAGER TBO_REC WTGAIN SEX APGAR5 DMEDUC
591430 9 1 25 2 NA F NA NULL
1827276 2 6 28 2 26 M 9 2 years of college
1705673 2 2 18 2 25 F 9 NULL
3368269 10 5 21 2 6 M 9 NULL
2990253 7 7 25 1 36 M 10 2 years of high school

UPREVIS ESTGEST DMETH_REC DPLURAL DBWT
591430 10 99 Vaginal 1 Single 3800
1827276 10 37 Vaginal 1 Single 3625
1705673 14 38 Vaginal 1 Single 3650
3368269 22 38 Vaginal 1 Single 3045
2990253 15 40 Vaginal 1 Single 3827

dim(births2006.smpl)

[1] 427323 13

The following bar chart of the frequencies of births according to the day of
week of the birth shows that fewer births take place during the weekend (days
1 = Sunday, 2 = Monday, . . . , 7 = Saturday of DOB_WK). This may have to do
with the fact that many babies are delivered by cesarean section, and that those
deliveries are typically scheduled during the week and not on weekends. To follow
up on this hypothesis, we obtain the frequencies in the two-way classification of
births according to the day of week and the method of delivery. Excluding births
of unknown delivery method, we separate the bar charts of the frequencies for the
day of week of delivery according to the method of delivery. While it is also true
that vaginal births are less frequent on weekends than on weekdays (doctors prefer
to work on weekdays), the reduction in the frequencies of scheduled C-section
deliveries from weekdays to weekends (about 50%) exceeds the weekday–weekend
reduction of vaginal deliveries (about 25–30%).

births.dow=table(births2006.smpl$DOB_WK)

births.dow

1 2 3 4 5 6 7
40274 62757 69775 70290 70164 68380 45683

barchart(births.dow,ylab="Day of Week",col="black")
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dob.dm.tbl=table(WK=births2006.smpl$DOB_WK,

+ MM=births2006.smpl$DMETH_REC)

dob.dm.tbl

MM
WK C-section Unknown Vaginal

1 8836 90 31348
2 20454 272 42031
3 22921 247 46607
4 23103 252 46935
5 22825 258 47081
6 23233 289 44858
7 10696 109 34878

dob.dm.tbl=dob.dm.tbl[,-2]

dob.dm.tbl

MM
WK C-section Vaginal

1 8836 31348
2 20454 42031
3 22921 46607
4 23103 46935
5 22825 47081
6 23233 44858
7 10696 34878

trellis.device()

barchart(dob.dm.tbl,ylab="Day of Week")

barchart(dob.dm.tbl,horizontal=FALSE,groups=FALSE,

+ xlab="Day of Week",col="black")
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We use lattice (trellis) graphics (and the R package lattice) to condition density
histograms on the values of a third variable. The variable for multiple births (sin-
gle births to births with five offsprings (quintuplets) or more) and the method of
delivery are our conditioning variables, and we separate histograms of birth weight
according to these variables. As expected, birth weight decreases with multiple
births, whereas the birth weight is largely unaffected by the method of delivery.
Smoothed versions of the histograms, using the lattice command density plot, are
also shown. Because of the very small sample sizes for quintuplet and even more
births, the density of birth weight for this small group is quite noisy. The dot
plot, also part of the lattice package, shows quite clearly that there are only few
observations in that last group, while most other groups have many observations
(which makes the dots on the dot plot “run into each other”); for groups with many
observations a histogram would be the preferred graphical method.

histogram(~DBWT|DPLURAL,data=births2006.smpl,layout=c(1,5),

+ col="black")

histogram(~DBWT|DMETH_REC,data=births2006.smpl,layout=c(1,3),

+ col="black")
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densityplot(~DBWT|DPLURAL,data=births2006.smpl,layout=c(1,5),

+ plot.points=FALSE,col="black")

densityplot(~DBWT,groups=DPLURAL,data=births2006.smpl,

+ plot.points=FALSE)
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dotplot(~DBWT|DPLURAL,data=births2006.smpl,layout=c(1,5),

+ plot.points=FALSE,col="black")
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Scatter plots (xyplots in the package lattice) are shown for birth weight against
weight gain, and the scatter plots are stratified further by multiple births. The last
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smoothed scatter plot indicates that there is little association between birth weight
and weight gain during the course of the pregnancy.

xyplot(DBWT~DOB_WK,data=births2006.smpl,col="black")

xyplot(DBWT~DOB_WK|DPLURAL,data=births2006.smpl,layout=c(1,5),

+ col="black")

xyplot(DBWT~WTGAIN,data=births2006.smpl,col="black")

xyplot(DBWT~WTGAIN|DPLURAL,data=births2006.smpl,layout=c(1,5),

+ col="black")
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We also illustrate box plots of birth weight against the APGAR score and
box plots of birth weight against the day of week of delivery. We would not
expect much relationship between the birth weight and the day of week of
delivery; there is no reason why babies born on weekends should be heavier
or lighter than those born during the week. The APGAR score is an indication
of the health status of a newborn, with low scores indicating that the newborn
experiences difficulties. The box plot of birth weight against the APGAR score
shows a strong relationship. Babies of low birth weight often have low APGAR
scores as their health is compromised by the low birth weight and its associated
complications.

## boxplot is the command for a box plot in the standard graphics
## package
boxplot(DBWT~APGAR5,data=births2006.smpl,ylab="DBWT",

+ xlab="AGPAR5")
boxplot(DBWT~DOB_WK,data=births2006.smpl,ylab="DBWT",

+ xlab="Day of Week")
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## bwplot is the command for a box plot in the lattice graphics
## package. There you need to declare the conditioning variables
## as factors
bwplot(DBWT~factor(APGAR5)|factor(SEX),data=births2006.smpl,

+ xlab="AGPAR5")
bwplot(DBWT~factor(DOB_WK),data=births2006.smpl,

+ xlab="Day of Week")
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We also calculate the average birth weight as function of multiple births, and
we do this for males and females separately. For that we use the tapply function.
Note that there are missing observations in the data set and the option na.rm=TRUE

(remove missing observations from the calculation) is needed to omit the missing
observations from the calculation of the mean. The bar plot illustrates graphically
how the average birth weight decreases with multiple deliveries. It also illustrates
that the average birth weight for males is slightly higher than that for females.

fac=factor(births2006.smpl$DPLURAL)
res=births2006.smpl$DBWT
t4=tapply(res,fac,mean,na.rm=TRUE)
t4

1 Single 2 Twin 3 Triplet
3298.263 2327.478 1677.017

4 Quadruplet 5 Quintuplet or higher
1196.105 1142.800

t5=tapply(births2006.smpl$DBWT,INDEX=list(births2006.smpl$DPLURAL,
+ births2006.smpl$SEX),FUN=mean,na.rm=TRUE)
t5

F M
1 Single 3242.302 3351.637
2 Twin 2279.508 2373.819
3 Triplet 1697.822 1655.348
4 Quadruplet 1319.556 1085.000
5 Quintuplet or higher 1007.667 1345.500

barplot(t4,ylab="DBWT")
barplot(t5,beside=TRUE,ylab="DBWT")
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Finally, we illustrate the levelplot and the contourplot of the R package lattice.
For these plots we first create a cross-classification of weight gain and estimated
gestation period by dividing the two continuous variables into 11 nonoverlapping
groups. For each of the resulting groups, we compute the average birth weight.
An earlier frequency distribution table of estimated gestation period indicates that
“99” is used as the code for “unknown”. For the subsequent calculations, we omit
all records with unknown gestation period (i.e., value 99). The graphs show that
the birth weight increases with the estimated gestation period, but that birth weight
is little affected by the weight gain. Note that the contour lines are essentially
horizontal and that their associated values increase with the estimated gestation
period.

t5=table(births2006.smpl$ESTGEST)
t5

12 15 17 18 19 20 21 22 23 24 25
1 2 18 43 69 116 162 209 288 401 445

26 27 28 29 30 31 32 33 34 35 36
461 566 670 703 1000 1243 1975 2652 4840 7954 15874
37 38 39 40 41 42 43 44 45 46 47

33310 76794 109046 84890 23794 1931 133 32 6 5 5
48 51 99
2 1 57682

new=births2006.smpl[births2006.smpl$ESTGEST != 99,]
t51=table(new$ESTGEST)
t51

12 15 17 18 19 20 21 22 23 24 25
1 2 18 43 69 116 162 209 288 401 445

26 27 28 29 30 31 32 33 34 35 36
461 566 670 703 1000 1243 1975 2652 4840 7954 15874
37 38 39 40 41 42 43 44 45 46 47

33310 76794 109046 84890 23794 1931 133 32 6 5 5
48 51
2 1
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t6=tapply(new$DBWT,INDEX=list(cut(new$WTGAIN,breaks=10),
+ cut(new$ESTGEST,breaks=10)),FUN=mean,na.rm=TRUE)
t6
levelplot(t6,scales = list(x = list(rot = 90)))
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contourplot(t6,scales = list(x = list(rot = 90)))

row

co
lu

m
n

(12,15.9)

(15.9,19.8)

(19.8,23.7)

(23.7,27.6)

(27.6,31.5)

(31.5,35.4)

(35.4,39.3)

(39.3,43.2)

(43.2,47.1)

(47.1,51)

(–
0.

09
8,

9.
72

)

(9
.7

2,
19

.5
)

(1
9.

5,
29

.4
)

(2
9.

4,
39

.2
)

(3
9.

2,
49

)

(4
9,

58
.8

)

(5
8.

8,
68

.6
)

(6
8.

6,
78

.5
)

(7
8.

5,
88

.3
)

(8
8.

3,
98

.1
)

1000

1500
2000

2500
3000

3500

www.it-ebooks.info

http://www.it-ebooks.info/


EXAMPLE 2: ALUMNI DONATIONS 17

2.1.1 Modeling Issues Investigated in Subsequent Chapters

This discussion, with its many summaries and graphs, has given us a pretty good
idea about the data. But what questions would we want to have answered with these
data? One may wish to predict the birth weight from characteristics such as the
estimated gestation period and the weight gain of the mother; for that, one could
use regression and regression trees. Or, one may want to identify births that lead to
very low APGAR scores, for which purpose, one could use classification methods.

2.2 EXAMPLE 2: ALUMNI DONATIONS

The file contribution.csv (available on our data Web site) summarizes the contribu-
tions received by a selective private liberal arts college in the Midwest. The college
has a large endowment and, as all private colleges do, keeps detailed records on
alumni donations. Here we analyze the contributions of five graduating classes
(the cohorts who have graduated in 1957, 1967, 1977, 1987, and 1997). The data
set consists of n = 1230 living alumni and contains their contributions for the
years 2000–2004. In addition, the data set includes several other variables such
as gender, marital status, college major, subsequent graduate work, and attendance
at fund-raising events, all variables that may play an important role in assessing
the success of future capital campaigns. This is a carefully constructed and well-
maintained data set; it contains only alumni who graduated from the institution, and
not former students who spent time at the institution without graduating. The data
set contains no missing observations. The first five records of the file are shown
below. Alumni not contributing have the entry “0” in the related column. The 1957
cohort is the smallest group. This is because of smaller class sizes in the past and
deaths of older alumni.

## Install packages from CRAN; use any USA mirror
library(lattice)
don <- read.csv("C:/DataMining/Data/contribution.csv")
don[1:5,]

Gender Class.Year Marital.Status Major Next.Degree FY04Giving FY03Giving
1 M 1957 M History LLB 2500 2500
2 M 1957 M Physics MS 5000 5000
3 F 1957 M Music NONE 5000 5000
4 M 1957 M History NONE 0 5100
5 M 1957 M Biology MD 1000 1000

FY02Giving FY01Giving FY00Giving AttendenceEvent
1 1400 12060 12000 1
2 5000 5000 10000 1
3 5000 5000 10000 1
4 200 200 0 1
5 1000 1005 1000 1

table(don$Class.Year)

1957 1967 1977 1987 1997
127 222 243 277 361
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barchart(table(don$Class.Year),horizontal=FALSE,
+ xlab="Class Year",col="black")
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Total contributions for 2000–2004 are calculated for each graduate. Summary
statistics (mean, standard deviation, and percentiles) are shown below. More than
30% of the alumni gave nothing; 90% gave $1050 or less; and only 3% gave more
than $5000. The largest contribution was $172,000.

The first histogram of total contributions shown below is not very informative
as it is influenced by both a sizable number of the alumni who have not con-
tributed at all and a few alumni who have given very large contributions. Omitting
contributions that are zero or larger than $1000 provides a more detailed view of
contributions in the $1–$1000 range; this histogram is shown to the right of the
first one. Box plots of total contributions are also shown. The second box plot omits
the information from outliers and shows the three quartiles of the distribution of
total contributions (0, 75, and 400).

don$TGiving=don$FY00Giving+don$FY01Giving+don$FY02Giving
+ +don$FY03Giving+don$FY04Giving

mean(don$TGiving)

[1] 980.0436

sd(don$TGiving)

[1] 6670.773

quantile(don$TGiving,probs=seq(0,1,0.05))

0% 5% 10% 15% 20% 25% 30% 35%
0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0
40% 45% 50% 55% 60% 65% 70% 75%
25.0 50.0 75.0 100.0 150.8 200.0 275.0 400.0
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80% 85% 90% 95% 100%
554.2 781.0 1050.0 2277.5 171870.1

quantile(don$TGiving,probs=seq(0.95,1,0.01))

95% 96% 97% 98% 99% 100%
2277.50 3133.56 5000.00 7000.00 16442.14 171870.06

hist(don$TGiving)
hist(don$TGiving[don$TGiving!=0][don$TGiving[don$TGiving!=0]<=1000])

Histogram of don$TGiving
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boxplot(don$TGiving,horizontal=TRUE,xlab="Total Contribution")

boxplot(don$TGiving,outline=FALSE,horizontal=TRUE,

+ xlab="Total Contribution")
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We identify below the donors who gave at least $30,000 during 2000–2004. We
also list their major and their next degree. The top donor has a mathematics–physics
double major with no advanced degree. Four of the top donors have law degrees.
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ddd=don[don$TGiving>=30000,]
ddd
ddd1=ddd[,c(1:5,12)]
ddd1
ddd1[order(ddd1$TGiving,decreasing=TRUE),]

Gender Class.Year Marital.Status Major Next.Degree TGiving
99 M 1957 M Mathematics-Physics NONE 171870.06
123 M 1957 W Economics-Business MBA 90825.88
132 M 1967 M Speech (Drama, etc.) JD 72045.31
105 M 1957 M History PHD 51505.84
135 M 1967 M History JD 42500.00
486 M 1977 M Economics MBA 36360.90
471 F 1977 D Economics JD 31500.00
1 M 1957 M History LLB 30460.00
2 M 1957 M Physics MS 30000.00
3 F 1957 M Music NONE 30000.00

For a university foundation, it is important to know who is contributing, as such
information allows the foundation to target their fund-raising resources to those
alumni who are most likely to donate. We show below box plots of total 5-year
donation for the categories of class year, gender, marital status, and attendance
at a foundation event. We have omitted in these graphs the outlying observa-
tions (those donors who contribute generously). Targeting one’s effort to high
contributors involves many personal characteristics that are not included in this
database (such as special information about personal income and allegiance to the
college). It may be a safer bet to look at the median amount of donation that
can be achieved from the various groups. Class year certainly matters greatly;
older alumni have access to higher life earnings, while more recent graduates
may not have the resources to contribute generously. Attendance at a foundation-
sponsored event certainly helps; this shows that it is important to get alumni to
attend such events. This finding reminds the author about findings in his consulting
work with credit card companies: if one wants someone to sign up for a credit
card, one must first get that person to open up the envelope and read the adver-
tising message. Single and divorced alumni give less; perhaps they worry about
the sky-rocketing expenses of sending their own kids to college. We also provide
box plots of total giving against the alumni’s major and second degree. In these,
we only consider those categories with frequencies exceeding a certain threshold
(10); otherwise, we would have to look at the information from too many groups
with low frequencies of occurrence. Alumni with an economics/business major
contribute most. Among alumni with a second degree, MBAs and lawyers give
the most.

boxplot(TGiving~Class.Year,data=don,outline=FALSE)

boxplot(TGiving~Gender,data=don,outline=FALSE)

boxplot(TGiving~Marital.Status,data=don,outline=FALSE)

boxplot(TGiving~AttendenceEvent,data=don,outline=FALSE)
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t4=tapply(don$TGiving,don$Major,mean,na.rm=TRUE)

t4

t5=table(don$Major)

t5
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t6=cbind(t4,t5)

t7=t6[t6[,2]>10,]

t7[order(t7[,1],decreasing=TRUE),]

barchart(t7[,1],col="black")

t4=tapply(don$TGiving,don$Next.Degree,mean,na.rm=TRUE)

t4

t5=table(don$Next.Degree)

t5

t6=cbind(t4,t5)

t7=t6[t6[,2]>10,]

t7[order(t7[,1],decreasing=TRUE),]

barchart(t7[,1],col="black")

t7[, 1]
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A plot of histogram densities, stratified according to year of graduation, shows
the distributions of 5-year giving among alumni who gave $1–$1000. It gives
a more detailed description of the distribution than the earlier histogram of all
contributions.

densityplot(~TGiving|factor(Class.Year),

+ data=don[don$TGiving<=1000,][don[don$TGiving<=1000,]

+ $TGiving>0,],plot.points=FALSE,col="black")

We now calculate the total of the 5-year donations for the five graduation
cohorts. We do this by using the tapply function (applying the summation func-
tion to the total contributions of each of the graduation classes). The result shows
that the 1957 cohort has contributed $560,000, compared to $35,000 of the 1997
cohort.
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t11=tapply(don$TGiving,don$Class.Year,FUN=sum,na.rm=TRUE)

t11

1957 1967 1977 1987 1997
560506.76 293750.74 210768.81 105288.37 35138.92

barplot(t11,ylab="Average Donation")
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Below we calculate the annual contributions (2000–2004) of the five graduation
classes. The 5 bar charts are drawn on the same scale to facilitate ready compar-
isons. The year 2001 was the best because of some very large contributions from
the 1957 cohort.

barchart(tapply(don$FY04Giving,don$Class.Year,FUN=sum,

+ na.rm=TRUE),horizontal=FALSE,ylim=c(0,225000),col="black")

barchart(tapply(don$FY03Giving,don$Class.Year,FUN=sum,

+ na.rm=TRUE),horizontal=FALSE,ylim=c(0,225000),col="black")

barchart(tapply(don$FY02Giving,don$Class.Year,FUN=sum,

+ na.rm=TRUE),horizontal=FALSE,ylim=c(0,225000),col="black")

barchart(tapply(don$FY01Giving,don$Class.Year,FUN=sum,

+ na.rm=TRUE),horizontal=FALSE,ylim=c(0,225000),col="black")

barchart(tapply(don$FY00Giving,don$Class.Year,FUN=sum,

+ na.rm=TRUE),horizontal=FALSE,ylim=c(0,225000),col="black")
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Finally, we compute the numbers and proportions of individuals who con-
tributed. We do this by first creating an indicator variable for total giving, and
displaying the numbers of the alumni who did and did not contribute. About 66%
of all alumni contribute. The mosaic plot shows that the 1957 cohort has the
largest proportion of contributors; the 1997 cohort has the smallest proportion of
contributors, but includes the largest number of individuals (the area of the bar
in a mosaic plot expresses the size of the group). The proportions of contributors
shown below indicate that 75% of the 1957 cohort contributes, while only 61% of
the 1997 graduating class does so. We can do the same analysis for each of the
5 years (2000–2004). The results for the most recent year 2004 are also shown.

don$TGivingIND=cut(don$TGiving,c(-1,0.5,10000000),

+ labels=FALSE)-1

mean(don$TGivingIND)

[1] 0.6569106

t5=table(don$TGivingIND,don$Class.Year)

t5

1957 1967 1977 1987 1997
0 31 71 75 105 140
1 96 151 168 172 221

barplot(t5,beside=TRUE)
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mosaicplot(factor(don$Class.Year)~factor(don$TGivingIND))
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t50=tapply(don$TGivingIND,don$Class.Year,FUN=mean,na.rm=TRUE)

t50

1957 1967 1977 1987 1997
0.7559055 0.6801802 0.6913580 0.6209386 0.6121884

barchart(t50,horizontal=FALSE)
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don$FY04GivingIND=cut(don$FY04Giving,c(-1,0.5,10000000),

+ labels=FALSE)-1

t51=tapply(don$FY04GivingIND,don$Class.Year,FUN=mean,

+ na.rm=TRUE)

t51

1957 1967 1977 1987 1997
0.5196850 0.5000000 0.4238683 0.3610108 0.3518006

barchart(t51,horizontal=FALSE)
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Below we explore the relationship between the alumni contributions among
the 5 years. For example, if we know the amount an alumnus gives in one year
(say in year 2000) does this give us information about how much that person
will give in 2001? Pairwise correlations and scatter plots show that donations in
different years are closely related. We use the command plotcorr in the package
ellipse to express the strength of the correlation through ellipse-like confidence
regions.

Data=data.frame(don$FY04Giving,don$FY03Giving,don$FY02Giving,
+ don$FY01Giving,don$FY00Giving)
correlation=cor(Data)
correlation

don.FY04Giving don.FY03Giving don.FY02Giving don.FY01Giving
don.FY04Giving 1.0000000 0.5742938 0.8163331 0.1034995
don.FY03Giving 0.5742938 1.0000000 0.5867497 0.1385288
don.FY02Giving 0.8163331 0.5867497 1.0000000 0.2105597
don.FY01Giving 0.1034995 0.1385288 0.2105597 1.0000000
don.FY00Giving 0.6831861 0.3783280 0.8753492 0.2528295

don.FY00Giving
don.FY04Giving 0.6831861
don.FY03Giving 0.3783280
don.FY02Giving 0.8753492
don.FY01Giving 0.2528295
don.FY00Giving 1.0000000

plot(Data)
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library(ellipse)

plotcorr(correlation)

don.FY04Giving

don.FY03Giving

don.FY02Giving

don.FY01Giving

don.FY00Giving
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We conclude our analysis of the contribution data set with several mosaic plots

that illustrate the relationships among categorical variables. The proportion of
alumni making a contribution is the same for men and women. Married alumni
are most likely to contribute, and the area of the bars in the mosaic plot indi-
cates that married alumni constitute the largest group. Alumni who have attended
an informational meeting are more likely to contribute, and more than half of all
alumni have attended such a meeting. Separating the alumni into groups who have
and have not attended an informational meeting, we create mosaic plots for giving
and marital status. The likelihood of giving increases with attendance, but the rel-
ative proportions of giving across the marital status groups are fairly similar. This
tells us that there is a main effect of attendance, but that there is not much of an
interaction effect.

mosaicplot(factor(don$Gender)~factor(don$TGivingIND))

mosaicplot(factor(don$Marital.Status)~factor(don$TGivingIND))

t2=table(factor(don$Marital.Status),factor(don$TGivingIND))

mosaicplot(t2)

mosaicplot(factor(don$AttendenceEvent)~factor(don$TGivingIND))
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factor(don$AttendenceEvent)
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t2=table(factor(don$Marital.Status),factor(don$TGivingIND),

+ factor(don$AttendenceEvent))

t2

, , = 0
0 1

D 16 18
M 106 157
S 114 72
W 2 2

, , = 1

0 1
D 18 26
M 84 364
S 80 162
W 2 7

mosaicplot(t2[,,1])

mosaicplot(t2[,,2])

t2[, , 1]

Not Attending Information Meeting Attending Information Meeting

D M S W D M S W

0
1

0
1

t2[, , 2]
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2.2.1 Modeling Issues to be Investigated in Subsequent Chapters

This discussion, with the many summaries and graphs, has told us much about the
information in the data. What questions would we want to have answered with this
data? It may be of interest to predict the likelihood of 2004 giving on the basis
of the previous giving history (2000–2003), donor characteristics, and whether
a graduate had attended an informational meeting. Logistic regression models or
classification trees will be the prime models. Unfortunately, the variable “attendance
at an informational meeting” does not indicate the year or years the meeting was
attended, so its influence on the 2004 donation may already be incorporated in the
donations of earlier years.

2.3 EXAMPLE 3: ORANGE JUICE

This section analyzes the weekly sales data of refrigerated 64-ounce orange juice
containers from 83 stores in the Chicago area. There are many stores throughout the
city, many time periods, and also three different brands (Dominicks, MinuteMaid,
and Tropicana). The data are arranged in rows, with each row giving the recorded
store sales (in logarithms; logmove), as well as brand, price, presence/absence of
feature advertisement, and the demographic characteristics of the store. There are
28,947 rows in this data set. The data is taken from P. Rossi’s bayesm package
for R, and it has been used earlier in Montgomery (1987).

Time sequence plots of weekly sales, averaged over all 83 stores, are shown
for the three brands. We create these plots by first obtaining the average sales
for a given week and brand (averaged over the 83 stores). For this, we use the
very versatile R function tapply. Time sequence plots of the averages are then
graphed for each brand, and the plots are arranged on the same scale for easy
comparison. An equivalent display, as three panels on the same plotting page, is
produced through the xyplot function of the lattice package. Box plots, histograms,
and smoothed density plots for sales, stratified for the three brands, are also shown.
These displays average the information across the 83 stores and the 121 weeks.

## Install packages from CRAN; use any USA mirror
library(lattice)

oj <- read.csv("C:/DataMining/Data/oj.csv")
oj$store <- factor(oj$store)
oj[1:2,]

store brand week logmove feat price AGE60 EDUC ETHNIC
1 2 tropicana 40 9.018695 0 3.87 0.2328647 0.2489349 0.1142799
2 2 tropicana 46 8.723231 0 3.87 0.2328647 0.2489349 0.1142799

INCOME HHLARGE WORKWOM HVAL150 SSTRDIST SSTRVOL CPDIST5 CPWVOL5
1 10.55321 0.1039534 0.3035853 0.4638871 2.110122 1.142857 1.92728 0.3769266
2 10.55321 0.1039534 0.3035853 0.4638871 2.110122 1.142857 1.92728 0.3769266

t1=tapply(oj$logmove,oj$brand,FUN=mean,na.rm=TRUE)
t1
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dominicks minute.maid tropicana
9.174831 9.217278 9.111483

t2=tapply(oj$logmove,INDEX=list(oj$brand,oj$week),FUN=mean,
+ na.rm=TRUE)
t2

40 41 42 43 44 45 46
dominicks 8.707053 7.721438 7.684779 8.220681 7.529664 7.485447 8.374706
minute.maid 8.316846 10.599174 8.350451 8.464384 10.272432 8.302100 8.975714
tropicana 8.772400 8.506540 8.859382 8.603009 8.422304 8.633549 8.579669

47 48 49 50 51 52 53
dominicks 8.737358 8.031447 7.790064 7.515055 10.308041 9.305908 9.136502
minute.maid 9.907359 8.238033 10.641114 8.195133 8.460606 8.340930 10.131160
tropicana 8.571572 8.739818 8.465478 8.633266 8.577919 8.827387 8.760043
. . .

plot(t2[1,],type= "l",xlab="week",ylab="dominicks",ylim=c(7,12))
plot(t2[2,],type= "l",xlab="week",ylab="minute.maid",ylim=c(7,12))
plot(t2[3,],type= "l",xlab="week",ylab="tropicana",ylim=c(7,12))
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logmove=c(t2[1,],t2[2,],t2[3,])

week1=c(40:160)

week=c(week1,week1,week1)
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brand1=rep(1,121)

brand2=rep(2,121)

brand3=rep(3,121)

brand=c(brand1,brand2,brand3)

xyplot(logmove~week|factor(brand),type= "l",layout=c(1,3),

+ col="black")
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boxplot(logmove~brand,data=oj)

histogram(~logmove|brand,data=oj,layout=c(1,3))

densityplot(~logmove|brand,data=oj,layout=c(1,3),

+ plot.points=FALSE)

densityplot(~logmove,groups=brand,data=oj,plot.points=FALSE)
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The previous displays ignore price and the presence of feature advertisement.
Below we graph sales against price, and we do this for each brand separately
but aggregating over weeks and stores. The graph shows that sales decrease with
increasing price. A density plot of sales for weeks with and without feature adver-
tisement, and a scatter plot of sales against price with the presence of feature
advertisement indicated by the color of the plotting symbol both indicate the very
positive effect of feature advertisement.

xyplot(logmove~week,data=oj,col="black")

xyplot(logmove~week|brand,data=oj,layout=c(1,3),col="black")

xyplot(logmove~price,data=oj,col="black")

xyplot(logmove~price|brand,data=oj,layout=c(1,3),col="black")
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smoothScatter(oj$price,oj$logmove)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4
6

8
10

12

oj$price

oj
$l

og
m

ov
e

densityplot(~logmove,groups=feat, data=oj, plot.points=FALSE)

xyplot(logmove~price,groups=feat, data=oj)
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Next we consider one particular store. Time sequence plots of the sales of store
5 are shown for the three brands. Scatter plots of sales against price, separately
for the three brands, are also shown; sales decrease with increasing price. Density
histograms of sales and scatter plots of sales against price, with weeks with and
without feature advertisement coded in color, are shown for each of the three
brands. Again, these graphs show very clearly that feature advertisement increases
the sales.

oj1=oj[oj$store == 5,]

xyplot(logmove~week|brand,data=oj1,type="l",layout=c(1,3),

+ col="black")

xyplot(logmove~price,data=oj1,col="black")

xyplot(logmove~price|brand,data=oj1,layout=c(1,3),col="black")
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densityplot(~logmove|brand,groups=feat,data=oj1,

+ plot.points=FALSE)

xyplot(logmove~price|brand,groups=feat,data=oj1)
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The volume of the sales of a given store certainly depends on the price that
is being charged and on the feature advertisement that is being run. In addition,
sales of a store may depend on the characteristics of the store such as the income,
age, and educational composition of its neighborhood. We may be interested in
assessing whether the sensitivity (elasticity) of the sales to changes in the price
depends on the income of the customers who live in the store’s neighborhood. We
may expect that the price elasticity is largest in poorer neighborhoods as poorer
customers have to watch their spending budgets more closely. To follow up on this
hypothesis, we look for the stores in the wealthiest and the poorest neighborhoods.
We find that store 62 is in the wealthiest area, while store 75 is in the poorest one.
Lattice scatter plots of sales versus price, on separate panels for these two stores,
with and without the presence of feature advertisments, are shown below. In order
to get a better idea about the effect of price on sales, we repeat the first scatter
plot and add the best fitting (least squares) line to the graph; more discussion on
how to determine that best fitting line is given in Chapter 3. The slope of the fitted
line is more negative for the poorest store, indicating that its customers are more
sensitive to changes in the price.

t21=tapply(oj$INCOME,oj$store,FUN=mean,na.rm=TRUE)

t21

t21[t21==max(t21)]

t21[t21==min(t21)]

oj1=oj[oj$store == 62,]

oj2=oj[oj$store == 75,]

oj3=rbind(oj1,oj2)

xyplot(logmove~price|store,data=oj3)

xyplot(logmove~price|store,groups=feat,data=oj3)

## store in the wealthiest neighborhood

mhigh=lm(logmove~price,data=oj1)

summary(mhigh)

plot(logmove~price,data=oj1,xlim=c(0,4),ylim=c(0,13))
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abline(mhigh)

## store in the poorest neighborhood

mlow=lm(logmove~price,data=oj2)

summary(mlow)

plot(logmove~price,data=oj2,xlim=c(0,4),ylim=c(0,13))

abline(mlow)
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2.3.1 Modeling Issues to be Investigated in Subsequent Chapters

We can use this data set to investigate clustering. We may want to learn whether it
is possible to reduce the 83 stores to a smaller number of homogeneous clusters.
Furthermore, we may want to explain sales as a function of explanatory variables
such as price, feature advertisements, and the characteristics of the store neighbor-
hood. In particular, we may want to study whether the effects of price changes and
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feature advertisements depend on demographic characteristics of the store neigh-
borhood. We will revisit this data set when we discuss regression (Chapter 3) and
LASSO estimation (Chapter 6).
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CHAPTER 3

Standard Linear Regression

In the standard linear regression model, the response y is a continuous measurement
variable such as sales or profit. We consider linear regression models of the form

y = f (x1, x2, . . . , xk ) + ε = α + β1x1 + β2x2 + · · · + βk xk + ε,

where the function f (·) is linear in the k regressor (predictor) variables. The data on
the regressor variables is collected into the design matrix X = [x1, x2, . . . , xk ]. The
error ε follows a normal distribution with mean zero and variance σ 2, implying that
the conditional mean of the response is a linear function of the regressor variables,

E (y |X ) = f (X ) = α + β1x1 + β2x2 + · · · + βk xk .

If all other variables are fixed, a one-unit change in the regressor variable xj (j =
1, 2, . . . , k) changes the expected mean response by βj units.

The estimation of the parameters is usually achieved through least squares
(which, for independent normal errors, is identical to maximum likelihood estima-
tion). The least squares estimates (̂α, β̂1, . . . , β̂k ) minimize the sum of the squared
differences between the observations and the values that are implied by the model,

D(α, β1, . . . , βk ) =
n∑

i=1

[
yi − (

α + β1xi1 + β2xi2 + · · · + βk xik

)]2
.

This sum of squares is also referred to as the regression deviance. Explicit expres-
sions for the least squares estimates can be written out in matrix form (see, e.g.,
Appendix 3.A). The expression ŷi = α̂ + β̂1xi1 + β̂2xi2 + · · · + β̂k xik is called the
fitted value of the response yi , and the difference yi − ŷi is called the residual.
The minimizing value D̂ = D (̂α, β̂1, . . . , β̂k ) = ∑n

i=1 (yi − ŷi )
2 determines the

estimate of Var(εi ) = σ 2, the R-square, and the F -statistic for testing the overall
significance of the regression. The unbiased estimate of σ 2 is given by

σ̂ 2 = D̂

n − k − 1
.

Data Mining and Business Analytics with R, First Edition. Johannes Ledolter.
 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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The R-square,

R2 = 1 −
 D̂∑ (

yi − y
)2

 ,

expresses the proportion of variation that is explained by the regression model.
The F -statistic,

F =

[
n∑

i=1

(
yi − y

)2 − D̂

]
/k

D̂/(n − k − 1)
,

is used test the overall significance of the regression. A large value of the F -statistic
leads us to reject the null hypothesis β1 = β2 = · · · = βk = 0; the null hypothesis
expresses that none of the predictor variables have an influence.

Details on regression models and their inferences, and on useful strategies for
model construction and model checking are given in the text by Abraham and
Ledolter (2006). Virtually all statistical packages include easy-to-use routines for
the estimation of regression models. Their output provides estimates of the regres-
sion coefficients, standard errors of the estimated coefficients, summary statistics
about the model fit, and predicted values and prediction intervals for new cases.

Strategies for simplifying regression models (i.e., achieving a simplified model
structure without giving up too much on the fit) are also described in texts on
regression. One strategy runs all possible regressions (with k predictor variables,
such a strategy requires running 2k − 1 different models), and then evaluates and
compares the explanatory power (i.e., the fit) of these models by looking at their
R-squares, adjusted R-squares, and Cp-statistics.

By adding variables to a model we are bound to decrease the error sum of
squares D̂ (in the worst case, it can stay the same) and consequently increase the
R-square, R2 = 1 −

[
D̂/

∑ (
yi − y

)2
]
. However, the relevant question is whether

the increase in R-square is substantial or just minor.
The adjusted R-square for a model with k regressors and k + 1 estimated coef-

ficients,

R2
adj = 1 − D̂/(n − k − 1)∑

(yi − y)2/(n − 1)
,

introduces a penalty for the number of estimated coefficients. While the R-square
can never decrease as more variables are added to the model, the adjusted R-square
of models with too many unneeded variables can actually decrease.

Mallows’ Cp-statistic,

Cp = D̂p

(n − k − 1)D̂Full

− [n − 2(p + 1)],

where D̂p is the error sum of squares of the regression model with p regressors (and
p + 1 coefficients) and D̂Full is the error sum of squares of the full regression model
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with all k regressors included. If a model with p < k regressors is already adequate,
its value of the Cp-statistic should be about p + 1. It is larger (usually quite a bit
larger) than p + 1 if a model with p regressors cannot explain the relationship. This
result suggests the following strategy: Calculate the Cp-statistic for each candidate
model with p regressors. This gives us k values for C1; k(k − 1)/2 values for C2;
. . . ; and one value for Ck . The Mallows’ statistic Cp measures bias. Among all
models with p variables, we prefer the models with low values of Cp . We graph Cp
against p + 1, the number of parameters, and add a line through the points (0,0)
and (k + 1, k + 1). For the largest model with k regressors, Ck = k + 1. We search
for the simplest model (with smallest p) that gives us an acceptable model; that is,
we search for a model with a Cp value close to p + 1 (and close to the line that
has been added to the plot). Good candidate models are those with few variables
and Cp ≈ p + 1. Once we have found such a model, then there is little need to
employ a more complicated model that involves more than p variables.

Automatic stepwise regression techniques (backward elimination, forward selec-
tion, and true stepwise regression) are related methods that simplify models auto-
matically. One needs to be careful with such automatic methods as they can end
up with quite different models (i.e., models including different regressor variables),
but quite similar fits. In situations where regressor variables are closely related (one
speaks of this as multicollinearity), it just happens that several models with different
sets of explanatory variables can explain the data equally well.

Most data mining applications deal with the prediction of the response. We
hope that the regression relationship that we have established on a training set
can help us with the prediction of new cases. The key to establishing whether a
regression model helps with prediction is to evaluate the predictions on a new test
data set that has not been used for the estimation of the parameters. The quality of
the predictions is typically assessed through statistics such as the mean (forecast)
error, the root mean square error, and the mean absolute percent error.

Denote the prediction (the out-of-sample prediction, not the residual from the
in-sample fit) for the response of a new case i with ŷi and its true response with
yi . Given a set of predictions for m new cases, we can evaluate the predictions
according to their

Mean error: ME =
(

1

m

) m∑
i=1

(yi − ŷi ),

Root mean square error: RMSE =
√√√√(

1

m

) m∑
i=1

(yi − ŷi )
2, and

Mean absolute percent error: MAPE = 100

m

m∑
i=1

|yi − ŷi |
yi

.

The mean error should be close to zero; mean errors different from zero indicate
a bias in the forecasts. The root mean square error expresses the magnitude of
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the forecast error in the units of the response variable. The mean absolute percent
forecast error expresses the forecast error in percentage terms. The mean absolute
percent error should not be used for a response that is close to zero as the division
by a small number becomes unstable. We want unbiased forecasts with low values
of RMSE and MAPE.

3.1 ESTIMATION IN R

The R function lm is used to fit linear (regression) models. The syntax for this
command is given below:

lm(formula, data, subset, weights, na.action,

method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,

singular.ok = TRUE, contrasts = NULL, offset, …)

3.2 EXAMPLE 1: FUEL EFFICIENCY OF AUTOMOBILES

A data set on the fuel efficiencies of 38 cars (taken from Abraham and Ledolter,
2006) is used as an illustration. We try to model the fuel efficiency, measured in
GPM (gallons per 100 miles), as a function of the weight of the car (in 1000 lb),
cubic displacement (in cubic inches), number of cylinders, horsepower, acceleration
(in seconds from 0 to 60 mph), and engine type (V-type and straight (coded as 1)).
We analyze GPM instead of the usual EPA fuel efficiency measure MPG (miles per
gallon). This is because the reciprocal transformation GPM = 100/MPG leads to
approximate linear relationships between the response and the predictors. Scatter
plots of GPM against two predictors (weight and displacement) are shown below.

## first we read in the data

FuelEff <- read.csv("C:/DataMining/Data/FuelEfficiency.csv")

FuelEff

MPG GPM WT DIS NC HP ACC ET
1 16.9 5.917 4.360 350 8 155 14.9 1
2 15.5 6.452 4.054 351 8 142 14.3 1
3 19.2 5.208 3.605 267 8 125 15.0 1
4 18.5 5.405 3.940 360 8 150 13.0 1
5 30.0 3.333 2.155 98 4 68 16.5 0
. . .

plot(GPM~WT,data=FuelEff)

plot(GPM~DIS,data=FuelEff)
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The R regression output shown in the following indicates that the regres-
sion model with all six explanatory variables explains 93.9 of the variation
(R-square = 0.9386).

FuelEff=FuelEff[-1]

## regression on all data

m1=lm(GPM~.,data=FuelEff)

summary(m1)

Call:
lm(formula = GPM ~ ., data = FuelEff)

Residuals:
Min 1Q Median 3Q Max

-0.4996 -0.2547 0.0402 0.1956 0.6455

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.599357 0.663403 -3.918 0.000458 ***
WT 0.787768 0.451925 1.743 0.091222 .
DIS -0.004890 0.002696 -1.814 0.079408 .
NC 0.444157 0.122683 3.620 0.001036 **
HP 0.023599 0.006742 3.500 0.001431 **
ACC 0.068814 0.044213 1.556 0.129757
ET -0.959634 0.266785 -3.597 0.001104 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.313 on 31 degrees of freedom
Multiple R-squared: 0.9386, Adjusted R-squared: 0.9267
F-statistic: 78.94 on 6 and 31 DF, p-value: < 2.2e-16
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The predictor variables in this model are themselves related. For example, one
can expect that a car with large weight has a large engine size and large horsepower.
The correlation matrix among all predictor variables (containing all pairwise cor-
relations) shows this quite clearly; we have highlighted in boldface the very large
correlation between weight and displacement, weight and number of cylinders, and
weight and horsepower. As a consequence, we can expect that a model with fewer
predictors will lead to a model representation that is almost as good.

cor(FuelEff)

GPM WT DIS NC HP ACC
GPM 1.00000000 0.92626656 0.8229098 0.8411880 0.8876992 0.03307093
WT 0.92626656 1.00000000 0.9507647 0.9166777 0.9172204 -0.03357386
DIS 0.82290984 0.95076469 1.0000000 0.9402812 0.8717993 -0.14341745
NC 0.84118805 0.91667774 0.9402812 1.0000000 0.8638473 -0.12924363
HP 0.88769915 0.91722045 0.8717993 0.8638473 1.0000000 -0.25262113
ACC 0.03307093 -0.03357386 -0.1434174 -0.1292436 -0.2526211 1.00000000
ET 0.52061208 0.66736606 0.7746636 0.8311721 0.7202350 -0.31023357

ET
GPM 0.5206121
WT 0.6673661
DIS 0.7746636
NC 0.8311721
HP 0.7202350
ACC -0.3102336
ET 1.0000000

Next, we calculate all possible regressions and their R-squares, adjusted R-
squares, and Cp-values. These calculations can be carried out using the function
regsubsets in the R-package leaps.

## best subset regression in R
library(leaps)
X=FuelEff[,2:7]
y=FuelEff[,1]
out=summary(regsubsets(X,y,nbest=2,nvmax=ncol(X)))
tab=cbind(out$which,out$rsq,out$adjr2,out$cp)
tab

(Intercept) WT DIS NC HP ACC ET R-Sq R-Sq(adj) Cp
1 1 1 0 0 0 0 0 0.8579697 0.8540244 37.674750
1 1 0 0 0 1 0 0 0.7880098 0.7821212 72.979632
2 1 1 1 0 0 0 0 0.8926952 0.8865635 22.150747
2 1 1 0 0 0 0 1 0.8751262 0.8679906 31.016828
3 1 0 0 1 1 0 1 0.9145736 0.9070360 13.109930
3 1 1 1 1 0 0 0 0.9028083 0.8942326 19.047230
4 1 0 0 1 1 1 1 0.9313442 0.9230223 6.646728
4 1 1 0 1 1 0 1 0.9204005 0.9107520 12.169443
5 1 1 1 1 1 0 1 0.9337702 0.9234218 7.422476
5 1 0 1 1 1 1 1 0.9325494 0.9220103 8.038535
6 1 1 1 1 1 1 1 0.9385706 0.9266810 7.000000
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The resulting table shows the trade-off between model size and model fit. The
model with just one regressor, weight of the automobile, leads to an R-square of
85.8. Just this one variable explains most of the variability in fuel efficiency. This
model is certainly easy to explain as the fuel needed to travel a certain distance
must be related to the weight of the object that is being pushed forward. Adding
displacement and number of cylinders to this model increases the R-square to 90.3.

Below we summarize the fitting results for the model that relates GPM to just
the weight of the automobile.

m2=lm(GPM~WT,data=FuelEff)

summary(m2)

Call:
lm(formula = GPM ~ WT, data = FuelEff)

Residuals:
Min 1Q Median 3Q Max

-0.88072 -0.29041 0.00659 0.19021 1.13164

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.006101 0.302681 -0.02 0.984
WT 1.514798 0.102721 14.75 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4417 on 36 degrees of freedom
Multiple R-squared: 0.858, Adjusted R-squared: 0.854
F-statistic: 217.5 on 1 and 36 DF, p-value: < 2.2e-16

We use these two models, the model with all six predictor variables and
the model with just weight of the automobile as explanatory variable, for
cross-validation. Cross-validation removes one case from the data set of n cases,
fits the model to the reduced data set, and predicts the response of that one case
that has been removed from the estimation. This is repeated for each of the n
cases. The summary statistics of the n genuine out-of-sample prediction errors
(mean error, root mean square error, mean absolute percent error) help us assess
the out-of-sample prediction performance. Cross-validation is very informative as
it evaluates the model on new data. We find that the model with all six regressors
performs better. It leads to a mean absolute percent error of about 6.75% (as
compared to 8.23% for the model with weight as the only regressor).

Cross-validation for the regression on all six regressors
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me # mean error

[1] -0.003981948
rmse # root mean square error

[1] 0.3491357
mape # mean absolute percent error

[1] 6.75226

Cross-validation for the regression on weight only

me # mean error

[1] -0.002960953
rmse # root mean square error

[1] 0.4517422
mape # mean absolute percent error

[1] 8.232507

The R program for this example, as well as R programs for all other examples
in this book, is listed on the webpage that accompanies this book. The readers are
encouraged to copy and paste these instructions into their own R session and check
the results.

3.3 EXAMPLE 2: TOYOTA USED-CAR PRICES

The data are taken from Shmueli et al. (2010).
The data set includes sale prices and vehicle characteristics of 1436 used Toyota

Corollas. The objective here is to predict the sale price of a used automobile. [We
have corrected one value in the CC (cylinder volume) column, changing the obvious
misprint “16,000” to “1600.”]

Variable Description
Id Record_ID
Model Model description
Price Offer price in EUROs
Age_08_04 Age in months as in August 2004
Mfg_Month Manufacturing month (1–12)
Mfg_Year Manufacturing year
KM Accumulated kilometers on odometer
Fuel_Type Fuel type (petrol, diesel, CNG)
HP Horsepower
Met_Color Metallic color (Yes=1, No=0)
Color Color (blue, red, gray, silver, black, and so on)
Automatic Automatic (Yes=1, No=0)
CC Cylinder volume in cubic centimeters
Doors Number of doors
Cylinders Number of cylinders
Gears Number of gear positions
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Quarterly_Tax Quarterly road tax in EUROs
Weight Weight in kilograms
Mfr_Guarantee Within manufacturer’s guarantee period (Yes=1, No=0)
BOVAG_Guarantee BOVAG (Dutch dealer network) guarantee (Yes=1, No=0)
Guarantee_Period Guarantee period in months
ABS Anti-lock brake system (Yes=1, No=0)
Airbag_1 Driver airbag (Yes=1, No=0)
Airbag_2 Passenger airbag (Yes=1, No=0)
Airco Airconditioning (Yes=1, No=0)
Automatic_airco Automatic Airconditioning (Yes=1, No=0)
Boardcomputer Board computer (Yes=1, No=0)
CD_Player CD player (Yes=1, No=0)
Central_Lock Central lock (Yes=1, No=0)
Powered_Windows Powered windows (Yes=1, No=0)
Power_Steering Power steering (Yes=1, No=0)
Radio Radio (Yes=1, No=0)
Mistlamps Mist lamps (Yes=1, No=0)
Sport_Model Sport model (Yes=1, No=0)
Backseat_Divider Backseat divider (Yes=1, No=0)
Metallic_Rim Metallic rim (Yes=1, No=0)
Radio_cassette Radio cassette (Yes=1, No=0)
Parking_Assistant Parking assistance system (Yes=1, No=0)
Tow_Bar Tow bar (Yes=1, No=0)

For this particular illustration, we do not use all variables. We use price as
the response, and age (in months), accumulated kilometers on the odometer (in
kilometer), fuel type (there are three: petrol, diesel, and compressed natural gas
CNG), horsepower, color (whether metallic = 1, or not), transmission (whether auto-
matic = 1, or not), cylinder volume (in cubic centimeters), doors (number of), and
weight (in kilograms) as the explanatory variables.

toyota <- read.csv("C:/DataMining/Data/ToyotaCorolla.csv")
toyota[1:3,]

Price Age KM FuelType HP MetColor Automatic CC Doors Weight
1 13500 23 46986 Diesel 90 1 0 2000 3 1165
2 13750 23 72937 Diesel 90 1 0 2000 3 1165
3 13950 24 41711 Diesel 90 1 0 2000 3 1165

## next we create indicator variables for the categorical variable
## FuelType with its three nominal outcomes: CNG, Diesel, and Petrol
v1=rep(1,length(toyota$FuelType))
v2=rep(0,length(toyota$FuelType))
toyota$FuelType1=ifelse(toyota$FuelType=="CNG",v1,v2)
toyota$FuelType2=ifelse(toyota$FuelType=="Diesel",v1,v2)
auto=toyota[-4]
auto[1:3,]
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Price Age KM HP MetColor Automatic CC Doors Weight FuelType1 FuelType2
1 13500 23 46986 90 1 0 2000 3 1165 0 1
2 13750 23 72937 90 1 0 2000 3 1165 0 1
3 13950 24 41711 90 1 0 2000 3 1165 0 1

The objective here is to predict the sale price. Scatter plots of price against age,
mileage, and horsepower are shown as follows:

plot(Price~Age,data=auto)

plot(Price~KM,data=auto)

plot(Price~HP,data=auto)
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The output when fitting the regression model (relating price to the selected
predictor variables) on all available data is shown on the following page. Note that
the categorical variable fuel type with its three possible outcomes was converted
into three indicator variables, and two of the three were included in the model (the
third one is a linear combination of the two and can be omitted). The coefficients
of the included indicators express the effects relative to the category that has been
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omitted. The model explains 86.9% of the variation in price. While this is quite
good, it is probably possible to simplify the model structure; not all coefficients
are statistically significant (e.g., the color of the car and the number of doors).

## regression on all data

m1=lm(Price~.,data=auto)

summary(m1)

Call:
lm(formula = Price ~ ., data = auto)

Residuals:
Min 1Q Median 3Q Max

-10642.3 -737.7 3.1 731.3 6451.5

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.681e+03 1.219e+03 -2.199 0.028036 *
Age -1.220e+02 2.602e+00 -46.889 < 2e-16 ***
KM -1.621e-02 1.313e-03 -12.347 < 2e-16 ***
HP 6.081e+01 5.756e+00 10.565 < 2e-16 ***
MetColor 5.716e+01 7.494e+01 0.763 0.445738
Automatic 3.303e+02 1.571e+02 2.102 0.035708 *
CC -4.174e+00 5.453e-01 -7.656 3.53e-14 ***
Doors -7.776e+00 4.006e+01 -0.194 0.846129
Weight 2.001e+01 1.203e+00 16.629 < 2e-16 ***
FuelInd…1. -1.121e+03 3.324e+02 -3.372 0.000767 ***
FuelInd…2. 2.269e+03 4.394e+02 5.164 2.75e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1316 on 1425 degrees of freedom
Multiple R-squared: 0.8693, Adjusted R-squared: 0.8684
F-statistic: 948 on 10 and 1425 DF, p-value: < 2.2e-16

How does this model perform in out-of-sample prediction? Denote the prediction
(we assume out-of-sample prediction, not the residual from the in-sample fit) for
the price of new car i , yi , with ŷi . Given a set of predictions for m new cars, we
again evaluate the predictions according to their

Mean error: ME =
(

1

m

) m∑
i=1

(yi − ŷi ),

Root mean square error: RMSE =
√√√√ 1

m

m∑
i=1

(yi − ŷi )
2,

Mean absolute percent error: MAPE = 100

m

m∑
i=1

|yi − ŷi |
yi

.
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The mean error should be close to zero; a mean error different from zero indicates a
bias in the forecasts. The root mean square error expresses the forecast error in the
units of the response variable. The mean absolute percent forecast error expresses
the forecast error in percentage terms.

Estimating the model on a randomly selected training set of 1000 cars and using
the results for predicting the price of the 436 remaining cars of the evaluation data
set leads to the following summary statistics:

me # mean error

[1] -48.70784
rmse # root mean square error

[1] 1283.097
mape # mean absolute percent error

[1] 9.208957

The results for cross-validation (leaving out a single observation and predicting
the response for the case that has been left out, for a total of 1436 prediction errors)
are quite similar. The mean absolute percentage error is about 9.5%.

me # mean error

[1] -2.726251
rmse # root mean square error

[1] 1354.509
mape # mean absolute percent error

[1] 9.530529

How does the last result compare with the cross-validation results for the regres-
sion model that includes just age as explanatory variable? The results show that
the mean absolute percentage error for the simpler model is considerably worse
(MAPE = 12.13).

3.3.1 Additional Comments

There is curvature in the scatter plot of Price against Age. This certainly makes
sense as one knows that a new car loses much of its “new car” value in the first
few months. A similar observation can be made for the relationship between price
and driven kilometers. Including the squares of Age and KM improves the fit.
Including Age2 (the square of Age) in the model improves the R-square from 79.0
(for the model with just the linear terms, Age and KM) to 83.2.

## Adding the squares of Age and KM to the model

auto$Age2=auto$Age^2

auto$KM2=auto$KM^2

m11=lm(Price~Age+KM,data=auto)

summary(m11)

m12=lm(Price~Age+Age2+KM+KM2,data=auto)

summary(m12)
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m13=lm(Price~Age+Age2+KM,data=auto)

summary(m13)

The adequacy of a regression model should always be investigated, and for this,
residual plots are very useful. Regression texts discuss numerous diagnostic residual
plots, but in this brief regression section, we recommend just plotting the residuals
against the fitted values and constructing a histogram (or a normal probability plot)
of the residuals. Model inadequacies will show up through patterns in the scatter
plot, and unusual cases will appear as outliers in the histogram of the residuals.
Patterns in the scatter plot of residuals against fitted values indicate that not all
information is extracted from the model and that some variables are missing. If the
scatter plot shows no association, the model is most likely adequate. The scatter
plot of residuals against fitted values for the linear model of Price on Age and KM
shows patterns (some curvature). The scatter plot of the revised model with Age2
included, on the other hand, shows little association.

plot(m11$res~m11$fitted)

hist(m11$res)

plot(m12$res~m12$fitted)
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APPENDIX 3.A THE EFFECTS OF MODEL OVERFITTING ON THE
AVERAGE MEAN SQUARE ERROR OF THE REGRESSION PREDICTION

Overfitting a regression model (i.e., including more covariates and estimating more
regression coefficients than are actually needed) increases the variance of the pre-
diction error. Below we provide a simple explanation of this fact. For a more
thorough discussion, we refer the reader to Hawkins (2004).

From general least squares regression, we know that the least squares estimate
of the k × 1 vector β in the linear model y = x ′β + ε is given by β̂ = (X ′X )−1X ′y .
Here

X =


x ′

1
x ′

2
...

x ′
n


represents the n × k design matrix, with each row giving the values of the regres-
sors for one case. Note that there is no intercept in the model; but a model without
intercept can always be achieved by centering the response and the predictor vari-
ables. We know that the prediction error for a new (independent) case with covariate
vector xi has mean 0 (the prediction is unbiased) and variance

Var(yi − x ′
i β̂) = σ 2[1 + x ′

i (X
′X )−1xi ].

Assume that none of the covariates are needed. As there is no intercept in
the model, the best prediction for a model with no covariate is 0 and the vari-
ance of the prediction error is σ 2. However, suppose that we incorporate all k
unneeded covariates into the prediction model. We notice that the estimation of the
unneeded regression parameters introduces the extra term σ 2x ′

i (X
′X )−1xi > 0 into

the variance. So we are worse off using the model with the unneeded covariates.
Below, we average the variance of the prediction errors over all values of the

covariates in the data set, x1, x2, . . . , xn . In doing so, we assume that the future
cases that we need to predict reflect the cases we had available for estimation. This
leads to the average prediction error variance

AvePEV =
(

1

n

) n∑
i=1

Var
(
yi − x ′

i β̂
)

=
(

1

n

) n∑
i=1

σ 2
[
1 + tr

(
x ′

i

(
X ′X

)−1
xi

)]

=
(

1

n

) n∑
i=1

σ 2
[
1 + tr

((
X ′X

)−1
xi x

′
i

)]

= σ 2

[
1 +

(
1

n

)
tr

((
X ′X

)−1

(
n∑

i=1

xi x
′
i

))]
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= σ 2
[

1 +
(

1

n

)
tr

((
X ′X

)−1 (
X ′X

))]
= σ 2

[
1 +

(
1

n

)
tr

(
Ik×k

)] = σ 2
(

1 + k

n

)
.

The trace of a square matrix A, denoted by tr (A), sums up the diagonal elements.
The result implies that each unneeded covariate increases the average variance by
a (multiplicative) factor of 1/n . Assume that none of the covariates are needed,
but that all k unneeded covariates are incorporated into the prediction model. As
the estimate of the unneeded coefficients β is unbiased (with mean 0), the resulting
mean of the prediction error from the overparametrized model is still zero (i.e., we
have an unbiased prediction). However the average variance of its prediction error
(which is the average mean square error as the prediction is unbiased) is increased
by a factor of k/n .

A similar argument is made in Ledolter and Abraham (1981) for forecasts from
ARIMA (autoregressive integrated moving average) time series models.
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CHAPTER 4

Local Polynomial Regression:
a Nonparametric Regression
Approach

Regression models with a single explanatory variable x can be written as

y = βx + ε, (4.1)

where µ(x) = βx represents the deterministic component of the model. In standard
regression, the method of least squares provides a single coefficient estimate β̂ that
does not change with the value of x , and the fitted value at x is given by β̂x . In
local polynomial regression, the regression coefficient is allowed to change with
the value of the explanatory variable, and it is estimated from data that lie within a
certain window around x . For each selected fitting point x , we define a bandwidth
h(x) and a smoothing window [x − h(x), x + h(x)]. Within the smoothing window
centered at the fitting point x , the regression component is approximated by the
polynomial µ(u) = β0 + β1(u − x) + · · · + βp(u − x)p . Only observations within
the smoothing window are used to estimate the coefficients of this polynomial.
The estimate β̂0 is then taken as the fitted value at x , µ̂(x) = β̂0; the fitted value
changes with x in a nonparametric manner.

For a given fitting point x , the estimates of the regression coefficients
(β0, β1, . . . , βp) in local polynomial regression are obtained by minimizing the
locally weighted least squares criterion,

n∑
i=1

wi (x)[yi − (β0 + β1(xi − x) + · · · + βp(xi − x)p)]2, (4.2)

where wi (x) = W [(xi − x)/h(x)] > 0 are weights, with W (u) a weight function
that assigns the largest weights to observations closest to x . Weight functions need

Data Mining and Business Analytics with R, First Edition. Johannes Ledolter.
 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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to be nonnegative, and areas under the weight functions need to be equal to 1.
The Epanechnikov weight function

W (u) =
(

3

4

)
(1 − u2), for |u| ≤ 1

= 0, for |u| > 1 (4.3)

is a popular choice (Epanechnikov, 1969), but other weight functions such as the
rectangular one are commonly used. The bandwidth h(x) controls the smoothness
of the fit. The simplest choice is to take h(x) = h constant, but often it is desirable
to vary h with the fitting point x . The nearest neighbor bandwidth chooses h(x)

such that the local neighborhood contains a constant number of points. For a given
nearest neighbor smoothing constant α, the nearest neighbor bandwidth is obtained
by computing the distances |x − xi | between the fitting point x and the data points
xi , ordering the distances, and selecting h(x) to be the k th smallest distance for
which k = nα. The bandwidth includes the 100α% observations that are closest
to the fitting point x . A small value of the smoothing constant α implies a small
bandwidth and little smoothing. A large value of the smoothing constant α implies
a large bandwidth and considerable smoothing.

The weights in the least squares criterion in Equation 4.2 change with the value
of x . For each selected value of x , a separate least squares estimation needs to
be carried out. But the local least squares criterion involves an easy minimization
and results in estimates β̂0(x), β̂1(x), . . . , β̂p(x) that are linear functions of the
response. This estimation is repeated for successive values of x , and the plot of
the estimates β̂0(x) against x provides a nonparametric, fitted regression function.

Constant, linear, and quadratic polynomials (p ≤ 2) are typically used.
An important advantage of local linear regression [p = 1, with µ(u) = β0 +
β1(u − x)] over local constant regression [p = 0; with µ(u) = β0] is that local
linear regression provides a better fit, especially at the data boundaries. A local
quadratic regression estimate reduces the bias even further, but may increase
the variance, especially at the data boundaries. Properties of local polynomial
regression estimates are reviewed in Fan and Gijbels (1996).

4.1 MODEL SELECTION

Bandwidth parameters have a critical influence on the fitted curve µ̂(x) = β̂0(x).
A large bandwidth leads to an oversmoothed curve that may miss important fea-
tures, while a small bandwidth may undersmooth the curve, resulting in a fit that is
too noisy. Several tools are available to help assess the performance of local poly-
nomial regression. Global criteria such as the generalized cross-validation (GCV)
statistic (Craven and Wahba, 1979) and the Cp-statistic (Cleveland and Devlin,
1988) use the average squared prediction error as a measure of model adequacy.
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At a given fitting point x , the estimates (β̂0(x), β̂1(x), . . . , β̂p(x)) and µ̂(x) =
β̂0(x) are linear functions of the response vector y = (y1, y2, . . . , yn)′, with the
n × n matrix L relating the responses to the fitted values,

µ̂
(
x1

)
µ̂(x2)

...

µ̂(xn)

 = Ly . (4.4)

In ordinary regression, L = H = X (X ′X )−1X ′ is the usual “hat” matrix. Its trace,
tr(H ) = p + 1, measures the “degrees of freedom” of the linear parametric fit. The
degrees of freedom of a local fit, ν1 = tr(L), provide a generalization of the number
of parameters in the parametric model. A local fit increases the flexibility of the
model, and ν1 = tr(L) increases with decreasing bandwidth and decreasing nearest
neighbor smoothing parameter α. In local regression with small bandwidth, the
degrees of freedom increase as the procedure gives considerable flexibility to the
function. A second, closely related and quite similar measure of degrees of freedom
of local fit is ν2 = tr(L′L).

The GCV statistic

GCV(µ̂) = n

n∑
i=1

[yi − µ̂(xi )]
2

(n − ν1)
2

, (4.5)

where µ̂(xi ) is the fitted value given in Equation 4.4, changes with the bandwidth
and the smoothing parameter. In a cross-validation plot, GCV is graphed against
the degrees of freedom of the local fit, and the bandwidth that minimizes GCV is
adopted for the estimation.

Cleveland and Devlin extend the Mallows Cp criterion to local regression. Their
Cp-statistic

Cp(µ̂) =
[

1

σ̂ 2

n∑
i=1

(
yi − µ̂

(
xi

))2

]
− n + 2ν1 (4.6)

is used to compare several different fits with different bandwidths. Implementation
of the Cp method requires an estimate of σ 2. Loader (1999, p. 30) shows that
an estimate of σ 2 is given by σ̂ 2 = 1/(n − 2ν1 + ν2)

∑n
i=1 (yi − µ̂(xi ))

2, where
ν1 = tr(L), ν2 = tr(L′L), with the matrix L in Equation 4.4 evaluated at the small-
est smoothing bandwidth for which the bias can be assumed negligible. The Cp
criterion in Equation 4.6 is plotted against ν2 = tr(L′L), the degrees of freedom
of the local fit. The largest bandwidth for which Cp(µ̂) ≈ tr(L′L) is taken as an
acceptable local specification.
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4.2 APPLICATION TO DENSITY ESTIMATION AND THE SMOOTHING
OF HISTOGRAMS

Local polynomial regression can be used to estimate the density of a distribution.
In this case, the response at xi is given by the empirical frequency yi = 1/n . The
smoothing constant of the nearest neighbor bandwidth, as well as the order of
the approximating polynomial and the weights in the local polynomial regression,
determine the amount of smoothing that is being applied to the density histogram.

4.3 EXTENSION TO THE MULTIPLE REGRESSION MODEL

The local polynomial regression can be used when there are two or more explana-
tory variables in the model, such as yi = βxi + γ zi + εi . When the explanatory
variables (xi , zi ) are measured in noncomparable units, it is important that they
are standardized by their marginal standard deviations. The regression coefficients
are estimated over a sliding data window. For each selected fitting point (x , z ), we
define a nearest neighbor bandwidth h(x , z ) such that the resulting two-dimensional
smoothing window with corner points [x ± h(x , z ), z ± h(x , z )] covers a specified
proportion of all observations. Within the two-dimensional smoothing window cen-
tered at the fitting point (x , z ), the regression component is approximated by the
polynomial µ(u , v) = β0 + ∑

j+k≤pβjk (u − x)j (v − z )k , and observations within
the smoothing window are used to estimate the regression coefficients. For a given
fitting point (x , z ), the estimates of the regression coefficients in local polynomial
regression are obtained by minimizing the locally weighted least squares criterion,

n∑
i=1

wi (x , z )

yi −
β0 +

∑
j+k≤p

βij

(
xi − x

)j
(zi − z )k


2

,

where wi (x , z ) = wi (x)wi (z ) > 0 are weights that assign largest weights to obser-
vations closest to (x , z ). The estimate β̂0 represents the fitted value at (x , z ); that is,
µ̂(x , z ) = β̂0. Contour plots connecting the values of the covariates that lead to the
same fitted value provide useful displays of the fitted two-dimensional regression
surface.

4.4 EXAMPLES AND SOFTWARE

The R library locfit can be used to carry out the computations. For illustration
we use two examples: the eruption and waiting times to the next eruption of 272
eruptions of the Old Faithful geyser in the Yellowstone National Park, and the
NOx exhaust emissions when using pure ethanol as the spark-ignition fuel in a
single-cylinder engine.
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4.4.1 Example 1: Old Faithful

The data file OldFaithful.csv contains the eruption times (in minutes) and the wait-
ing times to the next eruption (in minutes) of 272 eruptions of the Old Faithful
geyser in the Yellowstone National Park. The density histograms of eruption times
and of waiting times to the next eruption are shown. Next to the histograms we
show the smoothed density histograms that have been obtained through local poly-
nomial regression. We use the default parameters in the R library locfit, but also
illustrate how one can determine the optimal smoothing (bandwidth) constants
through cross-validation. The histograms for both variables are bimodal.

library(locfit)

## first we read in the data

OldFaithful <- read.csv("C:/DataMining/Data/OldFaithful.csv")

OldFaithful[1:3,]

TimeEruption TimeWaiting
1 3.600 79
2 1.800 54
3 3.333 74

## density histograms and smoothed density histograms

## time of eruption

hist(OldFaithful$TimeEruption,freq=FALSE)

fit1 <- locfit(~lp(TimeEruption),data=OldFaithful)

plot(fit1)
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## waiting time to next eruption

hist(OldFaithful$TimeWaiting,freq=FALSE)

fit2 <- locfit(~lp(TimeWaiting),data=OldFaithful)

plot(fit2)
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Histogram of OldFaithful$TimeWaiting

OldFaithful$TimeWaiting
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## cross-validation of smoothing constant

## for waiting time to next eruption

alpha<-seq(0.20,1,by=0.01)

n1=length(alpha)

g=matrix(nrow=n1,ncol=4)

for (k in 1:length(alpha)) {

g[k,]<-gcv(~lp(TimeWaiting,nn=alpha[k]),data=OldFaithful)

}

g

[,1] [,2] [,3] [,4]
[1,] -1028.531 17.980905 16.185681 8.671283
[2,] -1029.354 17.114850 15.407725 8.619349
[3,] -1030.749 16.275543 14.650517 8.574473
. . .

[42,] -1042.699 5.818206 5.365573 8.005730
[43,] -1042.497 5.758991 5.315595 8.000627
[44,] -1043.495 5.573373 5.147524 7.997128
[45,] -1043.483 5.465936 5.079868 7.990592
[46,] -1043.528 5.429989 5.045821 7.988783
[47,] -1043.557 5.385270 5.004441 7.986325 nn=0.66
[48,] -1046.023 5.323446 4.941556 8.001483
[49,] -1046.525 5.260504 4.884752 8.001542
. . .

plot(g[,4]~g[,3],ylab="GCV",xlab="degrees of freedom")

## minimum at nn = 0.66

fit2 <- locfit(~lp(TimeWaiting,nn=0.66,deg=2),

+ data=OldFaithful)

plot(fit2)
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It has been suggested that the waiting time to the next eruption depends on
the magnitude (i.e., the eruption time) of the current eruption. The scatter plot of
waiting time against eruption time and the least squares line that passes through
the data are shown below. One notices two clusters: short waiting times after small
eruptions, and long waiting times after large eruptions. While the relationship is
roughly linear, a closer inspection of the fit from local polynomial regression shows
that the fitted waiting times to the next eruption flatten out for very short and very
long eruption times.

## local polynomial regression of TimeEruption on TimeWaiting

plot(TimeWaiting~TimeEruption,data=OldFaithful)

# standard regression fit

fitreg=lm(TimeWaiting~TimeEruption,data=OldFaithful)

plot(TimeWaiting~TimeEruption,data=OldFaithful)

abline(fitreg)

# fit with nearest neighbor bandwidth

fit3 <- locfit(TimeWaiting~lp(TimeEruption),data=OldFaithful)

plot(fit3)
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4.4.2 Example 2: NOx Exhaust Emissions

We use the NOx exhaust emissions from an investigation that studies pure ethanol
as the spark-ignition fuel in a single-cylinder engine (Brinkman, 1981). The NOx
exhaust emissions depend on two predictor variables, the fuel–air equivalence ratio
(E ) and the compression ratio (R) of the engine.

The density histogram of the NOx emissions and its smoothed version using
local polynomial regression are shown as follows:

library(locfit)

## first we read in the data

ethanol <- read.csv("C:/DataMining/Data/ethanol.csv")

ethanol[1:3,]

NOx CompRatio EquivRatio
1 3.741 12 0.907
2 2.295 12 0.761
3 1.498 12 1.108

## density histogram

hist(ethanol$NOx,freq=FALSE)

## smoothed density histogram

fit <- locfit(~lp(NOx),data=ethanol)

plot(fit)
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Experiment with the locfit parameters deg (the default is 2) and nn (the nearest
neighbor smoothing constant α; the default is 0.7). These parameters control the
order of the approximating polynomial and the nearest neighbor smoothing constant
α. Larger values of nn result in a wider window and a smoother density. The R
program for obtaining the smoothed density can be found on the website that
accompanies this book.
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Next, we relate the NOx emissions to the engine’s equivalence ratio (E ). The
scatter plot of NOx emissions against the equivalence ratio is shown below. A stan-
dard regression of NOx against E leads to an unacceptable fit. The local polynomial
regression, on the other hand, provides an excellent approximation.

## standard regression of NOx on the equivalence ratio

fitreg=lm(NOx~EquivRatio,data=ethanol)

plot(NOx~EquivRatio,data=ethanol)

abline(fitreg)

## local polynomial regression of NOx on the equivalence ratio

## fit with a 50% nearest neighbor bandwidth.

fit <- locfit(NOx~lp(EquivRatio,nn=0.5),data=ethanol)

plot(fit)
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Experiment with the locfit parameters deg (default 2) and nn (default 0.7) and
check their impact on the fitting results.

Cross-validation can be used to learn about the appropriate smoothing constant.
The graph of the GCV statistic GCV(µ̂) against the degrees of freedom ν1 =
tr(L) points to a smoothing constant of around 0.30. The resulting fitted function
highlights local patterns that disappear with larger nearest neighbor smoothing
constants.

## cross-validation

alpha<-seq(0.20,1,by=0.01)

n1=length(alpha)

g=matrix(nrow=n1,ncol=4)

for (k in 1:length(alpha)) {

g[k,]<-gcv(NOx~lp(EquivRatio,nn=alpha[k]),data=ethanol)

}

g

[,1] [,2] [,3] [,4]
[1,] -3.220084 18.812657 16.426487 0.1183932
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[2,] -3.249601 17.616143 15.436227 0.1154507
[3,] -3.319650 16.770041 14.752039 0.1151542
[4,] -3.336464 15.444040 13.889209 0.1115457
[5,] -3.373011 14.523910 13.115430 0.1099609
[6,] -3.408908 13.967891 12.634934 0.1094681
[7,] -3.408908 13.967891 12.634934 0.1094681
[8,] -3.469254 12.993165 11.830996 0.1085293
[9,] -3.504310 12.388077 11.283837 0.1078784

[10,] -3.529167 11.938379 10.928859 0.1073628
[11,] -3.546728 11.469598 10.516520 0.1065792 nn=0.30
[12,] -3.552238 11.263716 10.322329 0.1061728 nn=0.31
[13,] -3.576083 11.035752 10.135243 0.1062533 nn=0.32
[14,] -3.679128 10.540964 9.662613 0.1079229
[15,] -3.679128 10.540964 9.662613 0.1079229
[16,] -3.699044 10.465337 9.578396 0.1082955
. . .

plot(g[,4]~g[,3],ylab="GCV",xlab="degrees of freedom")

f1=locfit(NOx~lp(EquivRatio,nn=0.30),data=ethanol)

f1

plot(f1)
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Finally, we relate the NOx emissions to both the engine’s equivalence ratio (E )
and compression ratio (R). Scatter plots of NOx emissions against the equivalence
ratio and of NOx emissions against the compression ratio are shown. The compres-
sion ratio has little marginal influence. A local polynomial regression model with
both explanatory variables is fitted and the contours of the implied fitted values are
also shown. The contours provide useful information, indicating that NOx emis-
sions are largest when E is about 0.9, but diminish when E moves away from 0.9
(in either direction).

## local polynomial regression on both E and C

plot(NOx~EquivRatio,data=ethanol)

plot(NOx~CompRatio,data=ethanol)
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fit <- locfit(NOx~lp(EquivRatio,CompRatio,scale=TRUE),

+ data=ethanol)

plot(fit)

## experiment with the parameters of locfit

fit <- locfit(NOx~lp(EquivRatio,CompRatio,nn=0.5,scale=TRUE),

+ data=ethanol)

plot(fit)

0.6 0.7 0.8 0.9 1.0 1.1 1.2

0.6 0.7 0.8 0.9 1.0 1.1 1.2

EquivRatio

N
O

x

8 10 12 14 16 18

CompRatio

 1
 0.5 

 0 

 0.5 

 0
.5

 

1

 1
 

 1.5 

 1
.5

 

 2 

2

 2.5 

 2
.5

 

 3 

 3
 

 3.5 

8
10

12
14

16
18

1
2

3
4

N
O

x

1
2

3
4

This last example with two explanatory variables illustrates that local polyno-
mial regression can effectively summarize information that could not be gained
from simple unsmoothed scatter plots or from ordinary regression. The smoothing
procedures discussed in this chapter prove especially useful if one deals with large
data sets, which allow for the estimation of functional representations that are more
general than the standard parametric ones.
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CHAPTER 5

Importance of Parsimony in Statistical
Modeling

Let us suppose that we are fitting a huge regression model with 100 covariates.
We assume that only 5 of 100 (regression) coefficients are influential and that
we are able to identify all five influential ones. We test the remaining useless
coefficients at the 5% significance level (α = 0.05). As we reject the null hypothesis
of no influence for 5% of the useless 95 variables, 100(4.75/9.75) ≈ 50% of the
significant regression coefficients are false positives. We refer to this as the false
discovery rate (FDR). Many large data mining applications involving business data
probably have fewer than 5–10% influential factors. Genetics and web analytics
are generally far worse. A sequence of multiple tests of hypotheses at the 5% level
is bound to run into problems as it will end up with many false positives. We refer
to this as the multiplicity problem.

5.1 HOW DO WE GUARD AGAINST FALSE DISCOVERY

Controlling the familywise error rate is one approach to addressing the multiplicity
problem. The Bonferroni method, for example, adjusts the significance (alpha)
level for individual comparisons. If it is desired that the significance level for the
whole family of m tests be (at most) α, then the Bonferroni correction tests each
individual hypothesis at significance level α/m . Several other adjustment methods
are available, but are not discussed here.

An alternative approach controls the FDR, the expected proportion of falsely
rejected hypotheses. This is described below.

Assume that the general testing setup involves m tests of hypotheses and m spec-
ified random test statistics. Assume that m0 is the number of true null hypotheses
(where a variable has no effect) and m − m0 is the number of true alternative
hypotheses (where a variable does have an effect). Assume that V is the number
of false positives (type I error decisions) and T is the number of false negatives
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(type II error decisions). Let U be the number of true negatives. It is easiest to
summarize this in the following table.

Null Hypothesis Alternative Hypothesis
Is True (H0) Is True (H1) Total

Declared significant V S R
Declared nonsignificant U T m − R
Total m0 m − m0 m

In m hypothesis tests of which m0 are true null hypotheses, R (the number of
significant tests) is an observable random variable, and S , T , U , and V are unob-
servable random variables. The FDR (the expected proportion of falsely rejected
null hypotheses) is given by FDR = E [V /(V + S )] = E [V /R]. One wants to keep
this value below a certain specified threshold α.

The following procedure is valid when the m tests are independent. Let
H1, H2, . . . , Hm be the m null hypotheses and let p1, p2, . . . , pm be their
corresponding probability values. Order these values in increasing order and
denote the ordered probability values by p(1) ≤ p(2) ≤ · · · ≤ p(m). For a given
desired false discovery rate FDR = α, find the largest k such that p(k) ≤ (k/m)α.
Then reject (i.e., declare positive) all H(i ) for i = 1, . . . , k . In other words, the
p-value rejection cutoff is not α (as it would be for a single hypothesis test),
but α∗ = maxj {p(j ) ≤ α(j/m)}. Accept all other null hypotheses (i.e., “zero out”
everything else) with probability value greater than α∗. Benjamini and Hochberg
(1995) show that this approach will guarantee that FDR ≤ α.

A simple way to carry out this approach graphically is by overlaying the plot
of the ordered p(j ) against j with a line plot of α(j/m) against j , and determine
the largest probability value that lies below the added line. It is easier to plot
quantities on a log–log scale as then log[α(j/m)] = log(α/m) + log(j ) is linear in
log(j ).

EXAMPLE 5.1 We generate 100 N(0,1) columns of length 25. We add 1 to the
first five columns to force the first 5 hypotheses tests Hi : µi = 0 (i = 1, 2, . . . , 5)

to come out significant. We conduct significance tests on all 100 columns and
calculate 100 probability values according to the one-sample t-test on 25 obser-
vations. For our simulation, 10 of the 100 tests turn out to be significant at the
individual 0.05 level. There are five false positives, for a false positive rate of 5/10,
or 50%.

Next, we select α = 0.10 as the FDR to be controlled. A plot of the ordered
p(j ) against j , overlaid with a plot of α(j/m) = (0.10)(j/100) against j with both
plots on a log–log scale, is shown on the following page. We calculate the p-value
rejection cutoff α∗ = maxj {p(j ) ≤ 0.10(j/100)}, and find this to be 0.0015; we get
this by taking the largest p-value that lies below the added straight line. It turns

www.it-ebooks.info

http://www.it-ebooks.info/


HOW DO WE GUARD AGAINST FALSE DISCOVERY 69

out that we declare six tests (the ones from the first five columns and one other)
significant. This is much better!
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EXAMPLE 5.2 Generate 500 N(0,1) columns of length 25. Again add 1 to make
the first five tests of hypotheses come out significant. Conduct significance tests on
all 500 columns and calculate the resulting 500 probability values. Thirty two turn
out to be significant at the individual 0.05 level, for a false positive rate of 27/32,
or 84%. This is not good at all.

Now select α = 0.20 as the FDR to be controlled. Calculate the p-value rejection
cutoff α∗ = maxj {p(j ) ≤ 0.20(j/500)}. The plot of the ordered p(j ) against j and the
plot of α(j/m) = (0.20)(j/500) against j (both plots on a log–log scale) are shown
below. The line is crossed after j = 7 resulting in α∗ ≈ 0.002. Using α∗ ≈ 0.002
as significance level, only seven tests are significant; the ones from the first five
columns and two others. This is much better!
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The previous discussion applies for independent tests. But what about depen-
dent tests? The Benjamini–Hochberg–Yekutieli procedure controls the FDR under
dependence assumptions; see Benjamini and Yekutieli (2001). Their refinement
modifies the threshold, and the p-value rejection cutoff becomes α∗∗ = maxj {p(j ) ≤
α[j/(m × c(m))]}, where c(m) = 1 if the tests are independent or positively corre-
lated, and c(m) = ∑m

i=1 1/i ≈ ln(m) + γ and γ ≈ 0.57721 (the Euler–Mascheroni
constant) if the tests are negatively correlated.

The R programs that generated the analysis in Examples 5.1 and 5.2 can be
found on the website that accompanies this book.
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CHAPTER 6

Penalty-Based Variable Selection
in Regression Models with Many
Parameters (LASSO)

Many regression models include a very large number of covariates, especially when
some of the covariates are categorical variables that have to be converted into
indicator variables. Recall that in Section 3.3, we included in the regression model
two indicator variables for the three possible outcomes of the categorical variable
fuel type. If one had a categorical variable with say 10 possible outcomes, one
would need nine indicator variables. We also mentioned earlier, in our discussion
of regression models (Appendix 3.A) and in the context of false discovery rates
(Chapter 5), that one needs to simplify models as the estimation of unneeded
coefficients degrades the forecasting performance.

One can apply multiple-comparison adjustments (such as the Bonferroni adjust-
ment) or methods that control the false discovery rate when testing the significance
of a very large number of predictors. Alternatively, one can adopt a regularized
version of the least squares solution that constrains the size of the estimates of the
coefficients β = (β1, β2, . . . , βk ) in the regression model

y = β1x1 + β2x2 + . . . + βk xk + ε.

Note that this regression model does not contain an intercept. But a model with-
out intercept can always be accomplished by centering both the response and the
explanatory variables.

The LASSO (least absolute shrinkage and selection operator) algorithm finds
a least squares solution under the constraint that

∑k
j=1|β̂j |, the L1 norm of the

estimated parameter vector, is no greater than a certain given value; that is, the
LASSO estimate of β = (β1, β2, . . . , βk ) is such that

β̂LASSO = arg min
β

n∑
i=1


yi −

k∑
j=1

βj xij




2

subject to
k∑

j=1

|βj | ≤ t .
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Here t ≥ 0 is a tuning parameter that controls the shrinkage that is being applied
to the estimates. Let the vector β̂ be the standard least squares estimate and let
t0 = ∑k

j=1|β̂j | be its L1 norm. Values of t ≥ t0 do not affect the least squares
minimization, and the least squares and the LASSO estimates are the same. Values
of t < t0, on the other hand, lead to a shrinkage of the least squares solution
toward 0; and some coefficients will be 0 exactly, leading to variable selection and
a simplification of the model. If t = 0, all estimated coefficients are shrunk to zero
(one may want to say, are “zeroed out”), and none of the variables are selected
into the model.

The computation of the LASSO estimate involves the solution of a quadratic
programming problem with linear inequality constraints. Solutions to such problems
have been studied quite extensively in the optimization literature. The LASSO
optimization problem can be rewritten in its equivalent Lagrangian form

β̂LASSO = arg min
β




n∑
i=1


yi −

k∑
j=1

βj xij




2

+ λ

k∑
j=1

|βj |


 ,

where the Lagrange multiplier λ serves the role of a penalty coefficient. For a fixed
value of the penalty λ, we obtain the LASSO estimate, β̂LASSO(λ), and its L1 norm,∑k

j=1|β̂LASSO
j (λ)|. Large values of λ penalize large coefficients, and the resulting

LASSO estimates will be shrunk to 0. Small values of the penalty λ, on the other
hand, result in little shrinkage; for λ = 0, there is no shrinkage at all. Note that the
shrinkage applies only to the slope coefficients of the regression model, but not the
intercept. The estimate of the intercept can always be calculated from the mean-
corrected version of the regression model, and it is given by y − ∑k

j=1 β̂LASSO
j (λ)x j .

The term λ
∑k

j=1|βj | in the earlier minimization has two major consequences:
(i) it makes the LASSO solutions nonlinear in the response observations yi and (ii)
there is no closed-form expression any more for the estimates. This differs from
the closed-form and linear solutions in ordinary least squares estimation as well
as in ridge regression, another penalty-based estimation approach. But, instead of
constraining the sum of the absolute values of the coefficients as done in LASSO,
ridge regression constrains the sum of the squared coefficients,

∑k
j=1 (βj )

2.
However, there exist efficient algorithms for computing the entire path of solu-

tions as the LASSO penalty λ is varied. The least angle regression (LARS) algo-
rithm (Efron et al., 2004) computes the entire LASSO path, and it does so very
efficiently, requiring essentially the same order of computations as that of a single
least squares fit on the k predictors. Details are given in Efron et al. (2004), as
well as in the book by Hastie et al. (2009).

The L1-regularized estimation formulation of the LASSO has a tendency to
prefer solutions with fewer nonzero parameter values, thus effectively reducing the
number of variables upon which the given solution is dependent. Thus LASSO can
be thought of as a penalty-based variable selection approach that selects variables
to be included into the model. Such an approach is certainly advantageous in
regression situations where one works with extremely large models that contain
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many variables and many coefficients, but where one knows a priori that many of
these variables are not needed. LASSO shrinks the estimates and sets some of the
coefficients equal to 0.

When using the LASSO approach, one needs to select λ (or, equivalently, the
coefficient t in the L1 norm constraint,

∑k
j=1|βj | ≤ t). Using the available very

efficient algorithms, LASSO estimates are readily obtained for any value of λ.
Forecasts can be calculated with the resulting constrained regression estimates,
and the out-of-sample prediction performance can be evaluated for any value of
λ. This makes cross-validation a very practical approach for selecting the penalty
parameter λ.

The lars package in R provides LASSO estimates of linear regression coeffi-
cients for a range of λ’s. The mode = “fraction” argument of this package, with the
fraction s representing a number between 0 and 1, provides regression estimates
of various degrees of shrinkage. The number s expresses the ratio of the L1 norm
of the LASSO estimate of the coefficient vector, relative to the L1 norm of the
least squares solution. The fraction s = 0, for example, implies that all coefficient
estimates are 0 (complete shrinkage to 0); s = 1 leads to the least squares solution.
Values in between reflect various degrees of shrinkage. Using the R function plot,
one can trace the behavior of the standardized estimates (estimates divided by their
standard errors) for changing values of s .

The predict function of the lars library can be used to predict the response with
LASSO estimates that have been shrunk to a certain fraction of the least squares
estimates. This results in fitted values for in-sample evaluation and in genuine
out-of-sample predictions for new cases.

The optimal value for s can be obtained through cross-validation and the R
command cv.lars. V-fold cross-validation with K = 10 folds, for example, divides
the cases of the data set into K = 10 nonoverlapping parts; it uses 9 of the 10 parts
for estimation and the tenth part for forecast evaluation. This is repeated 10 times,
for the 10 different segments of the holdout sample. Cross-validation mean square
errors, plotted for changing values of s , tell us about the shrinkage (the value of
s) that should be used. The R commands for carrying out these computations are
shown as follows:

lasso <- lars(x=x, y=y, trace=TRUE) # fit lasso

coef(lasso, s=c(1/4,1/2,3/4), mode="fraction") # coefficients

predict(lasso, x, s=1/2, mode="fraction") # predict

cv.lars(x=x,y=y,K=10) ## cross-validation using 10 folds

The LASSO estimates and the implied penalty-based variable selection have
several advantages over an approach that controls the false discovery rate. LASSO
is almost automatic and works very well for models that contain many covariates.
The estimation algorithms are very fast and efficient, and good software is available
to carry out the calculations. LASSO also calculates standard errors of the estimates,
and estimation and testing can be carried out at the same time. Multicollinearity

www.it-ebooks.info

http://www.it-ebooks.info/


74 PENALTY-BASED VARIABLE SELECTION IN REGRESSION MODELS

does not cause problems as in the case of closely related variables, LASSO chooses
one variable and “zeros out” the rest.

However, there are also disadvantages. LASSO is scale dependent, and because
of this one must be careful with the units of the explanatory variables. If one unit
is in the tens and one in the millions and if their associated coefficients differ by
several orders of magnitude, the penalty on the sum of the absolute values of the
coefficients may not have much meaning. One should standardize the explanatory
variables if their units are very different. In addition, and this is another disadvan-
tage, LASSO only works for regression models, while the approach of controlling
the false discovery rate applies to any testing situation.

6.1 EXAMPLE 1: PROSTATE CANCER

Let us consider an example on prostate cancer. The data, taken from Stamey et al.
(1989), contains the results of biopsies on 97 men of various ages. This data set
has been analyzed by Tibshirani (1996) in his introduction of the LASSO and by
many texts on data mining. The biopsy information includes:

Gleason score (gleason): scores are assigned to the two most common tumor
patterns ranging from 2 to 10; in this data set, the range is from 6 to 9.

Prostate-specific antigen (psa): laboratory results on protein production.

Capsular penetration (cp): reach of cancer into the gland lining.

Benign prostatic hyperplasia amount (bph): size of the prostate.

The goal is to predict the tumor log volume (which measures the tumor’s size or
spread). We try to predict this variable from five covariates (age; logarithms of bph,
cp, and psa; and the Gleason score). The predicted size of the tumor has important
implications for the subsequent treatment options, which include chemotherapy,
radiation treatment, and surgical removal of the prostate.

prostate <- read.csv("C:/DataMining/Data/prostate.csv")

prostate[1:3,]

lcavol age lbph lcp gleason lpsa
1 –0.5798185 50 –1.386294 -1.386294 6 –0.4307829
2 –0.9942523 58 –1.386294 -1.386294 6 –0.1625189
3 –0.5108256 74 –1.386294 -1.386294 7 –0.1625189

The output of both the standard regression analysis and the LASSO estimation
are shown as follows:

m1=lm(lcavol~.,data=prostate)

summary(m1)

Call:
lm(formula = lcavol ~ ., data = prostate)
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Residuals:
Min 1Q Median 3Q Max

-1.88964 -0.52719 -0.07263 0.57834 1.98728

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.49371 0.94261 -1.585 0.1165
age 0.01902 0.01063 1.789 0.0769 .
lbph -0.08918 0.05376 -1.659 0.1006
lcp 0.29727 0.06762 4.396 2.98e-05 ***
gleason 0.05240 0.11965 0.438 0.6625
lpsa 0.53955 0.07648 7.054 3.30e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7015 on 91 degrees of freedom
Multiple R-squared: 0.6642, Adjusted R-squared: 0.6457
F-statistic: 36 on 5 and 91 DF, p-value: < 2.2e-16

## the model.matrix statement defines the model to be fitted

x <- model.matrix(lcavol~age+lbph+lcp+gleason+lpsa,

+ data=prostate)

x=x[,-1]

## stripping off the column of 1s as LASSO includes the

## intercept automatically

library(lars)

## lasso on all data

lasso <- lars(x=x,y=prostate$lcavol,trace=TRUE)

## trace of lasso (standardized) coefficients for varying

## penalty

plot(lasso)
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lasso

Call:
lars(x = x, y = prostate$lcavol, trace = TRUE)
R-squared: 0.664
Sequence of LASSO moves:

lpsa lcp age gleason lbph
Var 5 3 1 4 2
Step 1 2 3 4 5

The graph of the LASSO estimates as a function of the shrinkage illustrates
the order in which variables enter the model as one relaxes the constraint on the
L1 norm of their estimates. Initially there is nothing in the model (look to the
left of the graph, where s = 0). Moving to the right on this graph, one finds that
the first variable to enter is variable 5 (lpsa); then variable 3 (lcp) enters; then
variable 1 (age). Or, scanning the graph from the right-hand side to the left, we
notice that variables 2 (lbph), 4 (gleason), and 1 (age) are “zeroed out” in that
order. Below, we list the parameter estimates for selected values of shrinkage;
s = 0.25, 0.50, 0.75, and 1.00. The LASSO estimates for s = 1 are the ordinary
least squares estimates (see the prior regression output).

coef(lasso,s=c(.25,.50,0.75,1.0),mode="fraction")

(Intercept) age lbph lcp gleason lpsa
[1,] 0 0.000000000 0.000000000 0.06519506 0.00000000 0.2128290 # s=0.25
[2,] 0 0.000000000 0.000000000 0.18564339 0.00000000 0.3587292 # s=0.50
[3,] 0 0.005369985 -0.001402051 0.28821232 0.01136331 0.4827810 # s=0.75
[4,] 0 0.019023772 -0.089182565 0.29727207 0.05239529 0.5395488 # s=1.00

## cross-validation using 10 folds
cv.lars(x=x,y=prostate$lcavol,K=10)
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The output of cross-validation (average mean square errors and their associated
standard error bounds) shows that the mean square error increases quite rapidly if
we shrink the coefficients too aggressively. The mean square curve is smallest for
s = 1 (the least squares solution), but is actually quite flat for all values of s larger
than 0.6. The present example does not call for much shrinkage. This is not too
surprising as the number of estimated coefficients (five coefficients, excluding the
intercept) is rather small relative to the size of the sample (n = 97).

A similar conclusion about the required amount of shrinkage is obtained when
selecting at random 80 of the 97 men for the training data set, and applying the
LASSO estimates to predict the log volume of the remaining 17 men. Repeating the
random sampling 10 times (each time leaving out 17 different randomly selected
men) leads to the mean square prediction errors that are shown in the box plot.
Again, one is best off staying with the least squares estimates.

## another way to evaluate lasso’s out-of-sample

## prediction performance

MSElasso25=dim(10)

MSElasso50=dim(10)

MSElasso75=dim(10)

MSElasso100=dim(10)

set.seed(1)

for(i in 1:10){

train <- sample(1:nrow(prostate),80)

lasso <- lars(x=x[train,],y=prostate$lcavol[train])

MSElasso25[i]=

+ mean((predict(lasso,x[-train,],s=.25,

+ mode="fraction")$fit-

+ prostate$lcavol[-train])^2)

MSElasso50[i]=

+ mean((predict(lasso,x[-train,],s=.50,

+ mode="fraction")$fit-

+ prostate$lcavol[-train])^2)

MSElasso75[i]=

+ mean((predict(lasso,x[-train,],s=.75,

+ mode="fraction")$fit-

+ prostate$lcavol[-train])^2)

MSElasso100[i]=

+ mean((predict(lasso,x[-train,],s=1.00,

+ mode="fraction")$fit-

+ prostate$lcavol[-train])^2)

}

mean(MSElasso25)

[1] 1.021938
mean(MSElasso50)

[1] 0.6723226
mean(MSElasso75)

[1] 0.5410033
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mean(MSElasso100)

[1] 0.5352386
boxplot(MSElasso25,MSElasso50,MSElasso75,MSElasso100,

+ ylab="MSE", sub="LASSO model",

+ xlab="s=0.25 s=0.50 s=0.75 s=1.0(LS)")
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6.2 EXAMPLE 2: ORANGE JUICE

This section analyzes the weekly sales data of refrigerated 64-ounce orange juice
containers from 83 stores in the Chicago area. There are many stores throughout
the city, many time periods, and three brands (Dominicks, MinuteMaid, and Trop-
icana). The data are arranged in rows with each row giving the recorded sales (in
logarithms; logmove), as well as brand, price, presence/absence of feature adver-
tisement, and the demographic characteristics of the stores. In total, there are 28,947
rows in this data set. The data is taken from P. Rossi’s bayesm package for R, and
it has been used earlier in Montgomery (1987). We have looked at this data set in
Chapter 2 of this text.

oj <- read.csv("C:/DataMining/Data/oj.csv")

STORE store number
BRAND brand indicator
WEEK week number
LOGMOVE log of the number of 64oz units sold
PRICE price of 64oz unit
FEATURE feature advertisement
AGE60 proportion of the population that is aged 60 or older
EDUC proportion of the population that has a college degree
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ETHNIC proportion of the population that is black or Hispanic
INCOME log median income
HHLARGE proportion of households with 5 or more persons
WORKWOM proportion of women with full-time jobs
HVAL150 proportion of households worth more than $150,000
SSTRDIST distance to the nearest warehouse store
SSTRVOL ratio of sales of this store to the nearest warehouse store
CPDIST5 average distance in miles to the nearest 5 supermarkets
CPWVOL5 ratio of sales of this store to the average of the nearest

five stores

oj[1:2,]

store brand week logmove feat price AGE60 EDUC ETHNIC
1 2 tropicana 40 9.018695 0 3.87 0.2328647 0.2489349 0.1142799
2 2 tropicana 46 8.723231 0 3.87 0.2328647 0.2489349 0.1142799

INCOME HHLARGE WORKWOM HVAL150 SSTRDIST SSTRVOL CPDIST5 CPWVOL5
1 10.55321 0.1039534 0.3035853 0.4638871 2.110122 1.142857 1.92728 0.3769266
2 10.55321 0.1039534 0.3035853 0.4638871 2.110122 1.142857 1.92728 0.3769266

x <- model.matrix(logmove ~ log(price)*(feat + brand
+ + AGE60 + EDUC + ETHNIC + INCOME + HHLARGE + WORKWOM
+ + HVAL150 + SSTRDIST + SSTRVOL + CPDIST5 + CPWVOL5)^2, data=oj)
dim(x)

[1] 28947 210

The model that is specified here contains as explanatory variables the logarithm
of price and its interaction with linear and quadratic components for feature, brand,
and the demographic characteristics of a store’s neighborhood. We mentioned
in Chapter 2 that price elasticities are most likely affected by demographic
characteristics such as the average income of a store’s immediate neighborhood.
The model.matrix statement in R allows us to specify the model without having
to write out all its terms in detail. The model y ∼ z ∗ (x1 + x2 + x3)∧2, for
example, includes the intercept and the following 13 terms: z, x1, x2, x3, x1 ∗
x2, x1 ∗ x3, x2 ∗ x3, z ∗ x1, z ∗ x2, z ∗ x3, z ∗ x1 ∗ x2, z ∗ x1 ∗ x3, z ∗ x2 ∗ x3. Our
model, with the three brands represented by two indicator variables, contains
210 covariates (including the intercept). This is a very large number, suggesting
a shrinkage approach such as LASSO for the estimation of its parameters. We
know that LASSO is sensitive to scale. Hence we normalize the covariates as they
are of very different magnitudes, and we transform the covariates such that each
covariate has mean 0 and standard deviation 1.

## First column of x consists of ones (the intercept)

## We strip the column of ones as intercept is included

## automatically

x=x[,-1]

## We normalize the covariates as they are of very different

## magnitudes

## Each normalized covariate has mean 0 and standard

## deviation 1

for (j in 1:209) {
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x[,j]=(x[,j]-mean(x[,j]))/sd(x[,j])

}

## One could consider the standard regression model

reg <- lm(oj$logmove~x)

summary(reg)

p0=predict(reg)

## Or, one could consider LASSO

library(lars)

lasso <- lars(x=x, y=oj$logmove, trace=TRUE)

coef(lasso, s=c(.25,.50,0.75,1.00), mode="fraction")

## creates LASSO estimates as function of lambda

## gives you the estimates for four shrinkage coef

## Check that predictions in regression and lars (s=1) are the

## same

p1=predict(lasso,x,s=1,mode="fraction")

p1$fit

pdiff=p1$fit-p0

pdiff ## zero differences

## out of sample prediction; estimate model on 20,000 rows

MSElasso10=dim(10)

MSElasso50=dim(10)

MSElasso90=dim(10)

MSElasso100=dim(10)

set.seed(1) ## fixes seed to make random draws reproducible

for(i in 1:10){

train <- sample(1:nrow(oj), 20000)

lasso <- lars(x=x[train,], y=oj$logmove[train])

MSElasso10[i]=mean((predict(lasso,x[-train,], s=.10,

+ mode="fraction")$fit -

+ oj$logmove[-train])^2)

MSElasso50[i]=mean((predict(lasso,x[-train,], s=.50,

+ mode="fraction")$fit -

+ oj$logmove[-train])^2)

MSElasso90[i]=mean((predict(lasso,x[-train,], s=.90,

+ mode="fraction")$fit -

+ oj$logmove[-train])^2)

MSElasso100[i]=mean((predict(lasso,x[-train,], s=1.0,

+ mode="fraction")$fit -

+ oj$logmove[-train])^2)

}

mean(MSElasso10)

[1] 0.3494492
mean(MSElasso50)

[1] 0.3456142
mean(MSElasso90)
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[1] 0.3455313
mean(MSElasso100)

[1] 0.3455732

boxplot(MSElasso10,MSElasso50,MSElasso90,MSElasso100,

+ ylab="MSE", xlab="LASSO model")
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The box plot summarizes the results for LASSO estimates that use differ-
ent amounts of shrinkage (fraction s = 0.10, 0.50, 0.90, and 1.00). Estimates are
obtained for 10 random samples of size 20,000 (always taken from the 28,947
units), and for each sample, the resulting estimates are used to predict the response
of the remaining 8947 units in the holdout sample. The mean of the 8947 squared
forecast errors is obtained for each random sample, and box plots of the 10
mean square errors are shown for each of the four shrinkage fractions that have
been considered. The finding that least squares with little or no shrinkage is
appropriate is not very surprising as we use lots of data (20,000 records) to
estimate just 210 coefficients. With so many observations, ordinary least squares
provides very reliable information about the coefficients, and little or no shrinkage is
needed.

It is a different story if we estimate the 210 coefficients on just 1000 data points.
We repeat the calculations, but now sample only 1000 rows (instead of the 20,000
considered earlier) for inclusion into the estimation data set. The predictions are
now evaluated on the remaining 28, 947–1000 = 27, 947 rows. The results shown
in the following graph indicate that in this case shrinkage clearly helps; reliable
estimation of that many parameters from just 1000 records is not possible without
some shrinkage.
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mean(MSElasso10)

[1] 0.4309619 BEST

mean(MSElasso50)

[1] 0.4436273
mean(MSElasso90)

[1] 0.4475674
mean(MSElasso100)

[1] 0.448235
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CHAPTER 7

Logistic Regression

In the standard regression model, the response is a continuous measurement variable
such as sales or profit. There we consider linear regression models of the form

y = f (x1, x2, . . . , xk ) + ε = α + β1x1 + β2x2 + · · · + βk xk + ε,

where the function f (·) is linear in the regressor (predictor) variables
X = [x1, x2, . . . , xk ]. The error ε follows a normal distribution with mean zero
and variance σ 2, implying that the conditional mean of the response is a linear
function of the regressor variables

E (y |X ) = f (X ) = α + β1x1 + β2x2 + · · · + βk xk .

In logistic regression the response variable is binary. The response can be either
true (success) or false (failure), usually coded as 1 and 0, such as buy a product or
do not buy; get the death penalty for a crime or not; and become insolvent or not.

Especially in high dimensions, it is often convenient to phrase the problem in
binary form. In many data mining problems, the target is a binary response such
as

• profit or loss, response greater or less than a certain value, being able to pay
back a loan or default;

• thumbs up or down, buy or not buy, become a potential customer or not;

• win or lose, sick or healthy, Republican or Democrat.

7.1 BUILDING A LINEAR MODEL FOR BINARY RESPONSE DATA

For a binary response, the conditional mean in the regression model becomes

E (y |X ) = 1 × P(y = 1|X ) + 0 × P(y = 0|X ) = P(y = 1|X ).

Data Mining and Business Analytics with R, First Edition. Johannes Ledolter.
 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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The expectation is now a probability that must always be between 0 and 1. Hence,
we cannot use just any linear regression function f (·), as an acceptable function
must always have values between 0 and 1. We want a response model where

p = P(y = 1|X ) = f (α + β1x1 + β2x2 + · · · + βk xk )

is between 0 and 1. For a single regressor variable x , we want a function f (·) that
looks like an “S-shaped” curve such as the ones shown below; for the moment, we
ignore the equations that are given next to the curves. Here, we have drawn the
functions starting at 0 and increasing to 1. Alternatively, we could have switched the
sign of the slope coefficient and made them decreasing functions of the explanatory
variable. Note that on these curves, p changes more quickly in the middle (when
p is 0.5) than at either end of the x-axis.

0 5 10

0.0

0.5

1.0

Explanatory Variable x

p 
= 

P
[y

 =
 1

]

−5 + x
−2.5 + (0.5)x

−7.5 + (1.5)x

The logistic regression model links the predictor variables to probabilities
through the equation

p = f (α + β1x1 + β2x2 + · · · + βk xk ) = exp(α + β1x1 + β2x2 + · · · + βk xk )

1 + exp(α + β1x1 + β2x2 + · · · + βk xk )
.

It can be verified that this function leads to S-shaped curves between 0 and 1
such as those shown in the earlier graph. The curves in the figure shown earlier
involve a single predictor and result from the equation with (α = −2.5, β1 =
0.5), (α = −5.0, β1 = 1.0), and (α = −7.5, β1 = 1.5). For large values of α +
β1x1 + β2x2 + · · · + βk xk , the probability approaches 1. The probability approaches
0 if α + β1x1 + β2x2 + · · · + βk xk is small. Further, the probability becomes 0.5 if
α + β1x1 + β2x2 + · · · + βk xk = 0.

Simple algebra shows that

log
p

1 − p
= α + β1x1 + β2x2 + · · · + βk xk .
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The quantity p/(1 − p) relates the probability of success, p, to the probability
of failure, 1 − p, and we refer to p/(1 − p) as the odds of success. The quantity
log[p/(1 − p)] is referred to as the logit of p and expresses the log odds of success.
The logistic regression model specifies a linear model for the log odds of success.

Logistic regression, with its logit “link” log[p/(1 − p)] modeled as a linear
function of the predictor variables, is the most popular model for a binary outcome
variable. Another useful model for binary outcome variables is the probit model. It
models the probit of p, the inverse cumulative probability distribution function of a
normal distribution, as a linear function of the predictor variables. The cumulative
probability distribution function of the normal distribution has the desired S-shaped
form between 0 and 1, which makes the model with a probit link useful. The model
with the probit link leads to very similar conclusions and, for this reason, it is not
considered in this text.

7.2 INTERPRETATION OF THE REGRESSION COEFFICIENTS IN A
LOGISTIC REGRESSION MODEL

All other variables remaining fixed, a change of one unit in the regressor variable x1
changes the log odds of success by β1 units. This implies that the odds of success
are changed by the multiplicative factor exp(β1), which is called the odds ratio.
Consider a regression coefficient β1 = −0.2 and exp(−0.2) = 0.82. It implies that
a change from x1 to x1 + 1 changes the odds of occurrence by the factor 0.82.
It reduces the odds of occurrence by 100(1 − 0.82) = 18%. A value β1 = 0 and
exp(0) = 1 implies that a change in the explanatory variable has no effect on the
odds of occurrence. A value β1 = 1.5 and exp(1.5) = 4.48 implies that a change
from x1 to x1 + 1 changes the odds of occurrence by the multiplicative factor 4.48.
It increases the odds by 100(4.48 − 1) = 348%.

7.3 STATISTICAL INFERENCE

The estimation of the parameters can be carried out through maximum likelihood
estimation. We skip the details; the interested reader may refer to Abraham and
Ledolter (2006) for the details. Virtually all statistical packages include routines
for the estimation of logistic regression models. The output from these packages
provides estimates as well as standard errors of the estimates.

For illustration, consider the model with a single regressor variable x . Assume
that we have n cases; that is, there are n pairs of observations containing the
value of the covariate xi and the success indicator yi = 0/1. Maximum like-
lihood estimation maximizes the likelihood (probability) of the realized obser-
vations. In the Bernouilli model setup, where the outcome of case i is either
1 or 0 with probabilities pi = [exp(α + β1xi )]/[1 + exp(α + β1xi )] and 1 − pi =
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1/[1 + exp(α + β1xi )], the likelihood function is

n∏
i=1

p(yi |xi ) =
n∏

i=1

(pi )
yi (1 − pi )

1−yi

=
n∏

i=1

[
exp

(
α + β1xi

)
1 + exp(α + β1xi )

]yi
[

1

1 + exp
(
α + β1xi

)
]1−yi

.

The maximization of this function with respect to the (logistic) regression param-
eters α and β1 is equivalent to the minimization of the deviance (the negative
logarithm of the likelihood)

D = −
[

n∑
i=1

yi log
(
pi

) +
n∑

i=1

(1 − yi ) log(1 − pi )

]
,

with probabilities

pi = exp(α + β1xi )

1 + exp(α + β1xi )
.

The deviance in standard regression, D = ∑n
i=1 [yi − (α + β1xi )]

2, was discussed
in Chapter 3. The minimizing value determines the estimate of Var(εi ) = σ 2 (and
also the R-square and the F-statistic for testing the overall significance of the
regression). In logistic regression there is no σ 2 to estimate. But we use the deviance
in logistic regression in the same manner that we use the deviance in standard
regression. We find the parameter estimates by minimizing the deviance, and we
use deviances to compare the fits of different models. For example, we compare the
deviance of the model that includes covariates (the fitted model) to the deviance of
the null model where the estimate of p is simply the sample proportion of successes
(i.e., the average of the 0/1 responses) that ignores the information of covariates.

7.4 CLASSIFICATION OF NEW CASES

Logistic regression models are quite useful for classifying new cases into one of
two outcome categories (“success” or “failure”). The estimated logistic model,
applied to new cases of a test (evaluation) data set, provides predictions of success
probabilities. With a certain cutoff on the predicted success probabilities (in later
sections we will say more about the appropriate selection of the cutoff), the logistic
regression provides a rule for classifying new cases. One can use the actual realiza-
tions of the cases in the test (evaluation) data set to investigate whether the logistic
regression (or any other classification method) is in fact capable of identifying the
actual outcomes. The lift curve, introduced in Section 7.7, assesses whether cases
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with the largest predicted probabilities of success are actually true successes. If this
is true, we say that the model gives us a nice “lift” in identifying the most likely
candidates for success.

7.5 ESTIMATION IN R

We look at several examples. We use the statistical software R for the estimation,
but also use Minitab, a popular spreadsheet-based software program, in the first
illustrative example.

The R command glm is used to fit logistic regression models. glm is a very
general routine as it can be used to fit generalized linear models (hence its name)
that are specified by listing the linear predictors, defining the error distribution, and
specifying a link function. For logistic regression, the family of the error distribution
is the binomial. The default, family = binomial [or family = binomial(link = ”logit”)]
specifies the logistic regression model. The probit model is obtained by specifying
family = binomial(link = ”probit”). The general glm syntax is shown below; the
following examples illustrate its use.

glm(formula, family = gaussian, data, weights, subset,

na.action, start = NULL, etastart, mustart, offset,

control = list(…), model = TRUE, method = "glm.fit",

x = FALSE, y = TRUE, contrasts = NULL, …)

glm.fit(x, y, weights = rep(1, nobs),

start = NULL, etastart = NULL, mustart = NULL,

offset = rep(0, nobs), family = binomial,

control = list(), intercept = TRUE)

7.6 EXAMPLE 1: DEATH PENALTY DATA

Is the death penalty more likely if the victim is white? Is the death penalty more
likely if the crime is horrible with many aggravating features? The data set, taken
from Abraham and Ledolter (2006) and listed here in summarized form, includes
the following variables:

Aggravation index measuring the severity of the crime; from 1 through 6 (really
bad);

VRace: race of victim (White/Black); VRaceC: race of victim (coded);
DY: number of people getting death (death = Yes);
DN: number of people getting life (death = No).
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Aggrav VRace VRaceC DY DN Number
1 White 1 2 60 62
1 Black 0 1 181 182
2 White 1 2 15 17
2 Black 0 1 21 22
3 White 1 6 7 13
3 Black 0 2 9 11
4 White 1 9 3 12
4 Black 0 2 4 6
5 White 1 9 0 9
5 Black 0 4 3 7
6 White 1 17 0 17
6 Black 0 4 0 4

Among the 62 cases where the victim was white (coded as 1) and where the
aggravation index was 1 (the lowest possible value), 2 defendants received the
death penalty, while 60 got life in prison. For the six cases with aggravation index
4 and black victims (coded as 0), two received the death penalty, while four got
life in prison.

The output of Minitab’s logistic regression program (Minitab, a popular statis-
tical software, is used in Abraham and Ledolter, 2006) is shown as follows:

7.6.1 Binary Logistic Regression: Minitab Program Output

Link Function: Logit

Response Information

Variable Value Count
DY Event 59

Non-event 303
Number Total 362

Logistic Regression Table
Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -6.67598 0.757445 -8.81 0.000
VRaceC 1.81065 0.536116 3.38 0.001 6.11 2.14 17.49
Aggrav 1.53966 0.186726 8.25 0.000 4.66 3.23 6.72

Log-Likelihood = -56.738
Test that all slopes are zero: G = 208.402, DF = 2, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 3.09395 9 0.960

www.it-ebooks.info

http://www.it-ebooks.info/


EXAMPLE 1: DEATH PENALTY DATA 89

Deviance 3.88158 9 0.919
Hosmer-Lemeshow 0.11147 2 0.946

7.6.2 Interpretation of Results and Analysis with R

The maximum likelihood estimate of the effect of race of victim is 1.81, leading to
the odds ratio exp(1.81) = 6.11. The estimate is statistically different from 0; the
probability value of the standardized test statistic is 0.001 and much smaller than
any reasonable significance level. Conditioning on the severity of the crime (the
other variable in the model), the odds of receiving the death sentence when the
victim is White (coded as 1) are 6.11 times the odds of getting the death sentence
when the victim is Black (coded as 0). There is no doubt that the victim’s race
makes a big difference.

Furthermore, the aggravation of the crime has a significant impact. The severity
of the crime increases the odds of receiving the death penalty. Each extra unit
on the aggravation scale multiplies the odds of receiving the death penalty by the
factor 4.66. This effect can be seen clearly from the figure shown below, which
graphs the estimated probabilities of receiving the death penalty,

p = exp(−6.68 + 1.81VRaceC + 1.54Aggrav)

1 + exp(−6.68 + 1.81VRaceC + 1.54Aggrav)
,

as a function of aggravation, and does so separately for a White (VRaceC = 1) and
Black (VRaceC = 0) victim.
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Next, we duplicate the results with the statistical software package R. We list the
data again, but now after having converted the summarized data shown earlier back
into the original 362 individual cases. In many applications, the data are given in
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terms of individual cases (such as shown in the following), and not in summarized
form. The individual cases are stored in the file DeathPenalty.csv.

## analyzing individual observations
dpen <- read.csv("C:/DataMining/Data/DeathPenalty.csv")
dpen[1:4,]

Agg VRace Death
1 1 1 1
2 1 1 1
3 1 1 0
4 1 1 0

dpen[359:362,]

359 6 0 1
360 6 0 1
361 6 0 1
362 6 0 1

m1=glm(Death~VRace+Agg,family=binomial,data=dpen)
m1

summary(m1)

Call: glm(formula = Death ~ VRace + Agg, family = binomial, data = dpen)

Coefficients:
(Intercept) VRace Agg

-6.676 1.811 1.540

Degrees of Freedom: 361 Total (i.e. Null); 359 Residual
Null Deviance: 321.9
Residual Deviance: 113.5 AIC: 119.5

summary(m1)

Call:
glm(formula = Death ~ VRace + Agg, family = binomial, data = dpen)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7526 -0.2658 -0.1083 -0.1083 3.2069

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.6760 0.7574 -8.814 < 2e-16 ***
VRace 1.8106 0.5361 3.377 0.000732 ***
Agg 1.5397 0.1867 8.246 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 321.88 on 361 degrees of freedom
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Residual deviance: 113.48 on 359 degrees of freedom
AIC: 119.48

Number of Fisher Scoring iterations: 7

The results are the same, with odds ratios exp(1.8106) = 6.11 and
exp(1.5397) = 4.66. The estimated probabilities are easily plotted in R as well.

## calculating logits
exp(m1$coef[2])

VRace
6.1144

exp(m1$coef[3])

Agg
4.663011

## plotting probability of getting death penalty as a function of
## aggravation separately for black (in black) and white (in red)
## victim
fitBlack=dim(501)
fitWhite=dim(501)
ag=dim(501)
for (i in 1:501) {
ag[i]=(99+i)/100
fitBlack[i]=exp(m1$coef[1]+ag[i]*m1$coef[3])/(1+exp(m1$coef[1]+

+ ag[i]*m1$coef[3]))
fitWhite[i]=exp(m1$coef[1]+m1$coef[2]+ag[i]*m1$coef[3])/

+ (1+exp(m1$coef[1]+m1$coef[2]+ag[i]*m1$coef[3]))
}
plot(fitBlack~ag,type="l",col="black",ylab="Prob[Death]",

+ xlab="Aggravation",ylim=c(0,1),
+ main="red line for white victim; black line for black victim")
points(fitWhite~ag,type="l",col="red")
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Below, we illustrate the analysis of the aggregated data using the weights
option in R. The aggregated data are stored in the data file DeathPenaltyOther.
csv.

## analyzing summarized data
dpenother <- read.csv("C:/DataMining/Data/DeathPenaltyOther.csv")
dpenother

Agg VicRace VRace Death Freq
1 1 White 1 1 2
2 1 White 1 0 60
3 1 Black 0 1 1
4 1 Black 0 0 181
5 2 White 1 1 2
6 2 White 1 0 15
7 2 Black 0 1 1
8 2 Black 0 0 21
9 3 White 1 1 6
10 3 White 1 0 7
11 3 Black 0 1 2
12 3 Black 0 0 9
13 4 White 1 1 9
14 4 White 1 0 3
15 4 Black 0 1 2
16 4 Black 0 0 4
17 5 White 1 1 9
18 5 Black 0 1 4
19 5 Black 0 0 3
20 6 White 1 1 17
21 6 Black 0 1 4

m1=glm(Death~VRace+Agg,family=binomial,weights=Freq,data=dpenother)
m1
summary(m1)
exp(m1$coef[2])
exp(m1$coef[3])

7.7 EXAMPLE 2: DELAYED AIRPLANES

The data are taken from Shmueli et al. (2010). The data set consists of 2201
airplane flights in January 2004 from the Washington DC area into the NYC area.
The characteristic of interest (the response) is whether or not a flight has been
delayed by more than 15 min (coded as 0 for no delay, and 1 for delay).

The explanatory variables include

three different arrival airports (Kennedy, Newark, and LaGuardia);

three different departure airports (Reagan, Dulles, and Baltimore);

eight carriers;

a categorical variable for 16 different hours of departure (6 am to 10 pm);
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weather conditions (0 = good/1 = bad);

day of week (1 for Sunday and Monday; and 0 for all other days).

Here the objective is to identify flights that are likely to be delayed. The binary
classification problem, which amounts to deciding whether a new case with given
features is either a “success” (in this case, delayed) or a “failure” (in this case,
on-time) is very common in data mining, and this is what makes the logistic
regression approach so useful. The logistic regression model provides an estimate
of the probability of success, and this probability is then used to classify cases into
one of two groups, success or failure. For many classifications, it makes sense to
use cutoff 0.5 on the probability of success. With this cutoff, we classify a case
into the success group if its probability of success is 0.5 or larger, and we classify
it as a failure otherwise. This is known as the majority rule as it classifies a case
on the larger of the two probabilities.

The selection of the probability cutoff has important consequences for classi-
fication as it changes (i.e., trades off) the frequencies of the two possible mis-
classification errors: misclassifying a true success as failure, and misclassifying
a true failure as success. In the next chapter, we will say more about this, and
we will introduce a curve, the receiver-operating characteristic (ROC) function, to
describe this trade-off. For a symmetric cost structure where either misclassifica-
tion is equally costly, a cutoff 0.5 is appropriate. For asymmetric costs, where one
type of misclassification is more costly than the other, it makes sense to select a
probability cutoff that is different from 0.5 (see Section 7.9).

Evaluating the quality of a method or a model (here, the logistic regression) is
important, and we discuss the evaluation of a classification rule in the context of
this example. It is important that the classification is evaluated on future cases (out-
of-sample evaluation), and not just on cases that have been used to estimate the
model coefficients (in-sample evaluation). A retrospective in-sample classification
on cases that have been used for model fitting tends to given an overly positive
assessment.

With the large data sets that are commonly available in data mining, we can
easily split the cases into two groups. One set of cases is used for model fitting,
while the remaining set of cases is used for evaluation (testing). We use random
sampling without replacement to select the cases for model fitting. Quite often,
we split the data roughly in half (50/50 split). We saw in earlier examples that R
includes very convenient methods to do this. Predictions for the cases in the eval-
uation set can then be compared to the actual outcomes, and the number of correct
classifications and the number of misclassifications can be determined. This pro-
cess can be repeated for different randomly chosen training sets, and the resulting
misclassifications can be averaged to obtain stable estimates of misclassification
errors that are not sensitive to just one particular selection of a training set.

Another way to evaluate the classifications on new data is to leave out just a
single case from all available n cases and then obtain and evaluate the prediction of
the case that has been held back. This process is repeated for a total of n times, with
each of the n cases being held back once. An overall assessment of the quality of
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the classification is obtained by averaging the misclassification errors. This method
is referred to as cross-validation. We have already used this approach in previous
chapters.

For our illustration, we select 60% of the cases of our data set (1320 cases) for
the fitting (training) data set; the remaining 40% of the cases (881 cases) become
the evaluation data set. The success probability (proportion of delayed planes) in
the training set is 0.198; the failure probability (proportion of on-time flights) is
0.802.

We assume a symmetric cost structure and probability cutoff 0.5. The naı̈ve rule
that does not incorporate any covariate information classifies every flight as being
on-time as the estimated unconditional probability of a flight being on-time, 0.802,
is larger than the cutoff 0.5. This rule never makes an error predicting a flight that
is on-time, but it makes a 100% error when the flight is delayed. The naı̈ve rule
fails to identify the 167 delayed flights among the 881 flights of the evaluation
data set; its misclassification error rate in the holdout sample is 167/881 = 0.189.

We now use for classification the logistic regression model that includes all
explanatory variables as covariates. We estimate the logistic regression model on
the training data set and classify a new case as success if its predicted probability of
success is larger than 0.5. The attached R program illustrates how this can be done.
The predictor variables are categorical variables or factors; the columns of factor
levels need to be transformed into indicator variables, and the resulting indicator
variables are then included in the logistic regression as explanatory variables. The
logistic regression reduces the overall misclassification error in the holdout (eval-
uation/test) data set to 0.176, for a somewhat modest improvement over the naı̈ve
rule (0.189). A table of correct classifications and misclassifications is shown later.
Among the 167 delayed flights, logistic regression identifies correctly 14 delayed
flights (8.4%), but it misses 153/167 delayed flights (92.6%). Furthermore, the
logistic regression model predicts 2 of the 714 on-time flights as being delayed.

library(car) ## needed to recode variables
set.seed(1)

## read and print the data
del <- read.csv("C:/DataMining/Data/FlightDelays.csv")
del[1:3,]

schedtime carrier deptime dest distance date flightnumber origin weather
1 1455 OH 1455 JFK 184 1/1/2004 5935 BWI 0
2 1640 DH 1640 JFK 213 1/1/2004 6155 DCA 0
3 1245 DH 1245 LGA 229 1/1/2004 7208 IAD 0

dayweek daymonth tailnu delay
1 4 1 N940CA ontime
2 4 1 N405FJ ontime
3 4 1 N695BR ontime

## define hours of departure
del$sched=factor(floor(del$schedtime/100))
table(del$sched)
table(del$carrier)
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table(del$dest)
table(del$origin)
table(del$weather)
table(del$dayweek)
table(del$daymonth)
table(del$delay)
del$delay=recode(del$delay,"’delayed’=1;else=0")
del$delay=as.numeric(levels(del$delay)[del$delay])
table(del$delay)
## Delay: 1=Monday; 2=Tuesday; 3=Wednesday; 4=Thursday;
## 5=Friday; 6=Saturday; 7=Sunday
## 7=Sunday and 1=Monday coded as 1
del$dayweek=recode(del$dayweek,"c(1,7)=1;else=0")
table(del$dayweek)
## omit unused variables
del=del[,c(-1,-3,-5,-6,-7,-11,-12)]
del[1:3,]

carrier dest origin weather dayweek delay sched
1 OH JFK BWI 0 0 0 14
2 DH JFK DCA 0 0 0 16
3 DH LGA IAD 0 0 0 12

n=length(del$delay)
n
[1] 2201
n1=floor(n*(0.6))
n1
[1] 1320
n2=n-n1
n2
[1] 881
train=sample(1:n,n1)

## estimation of the logistic regression model
## explanatory variables: carrier, destination, origin, weather,
## day of week (weekday/weekend), scheduled hour of departure
## create design matrix; indicators for categorical variables
## (factors)
Xdel <- model.matrix(delay~.,data=del)[,-1]
Xdel[1:3,]

carrierDH carrierDL carrierMQ carrierOH carrierRU carrierUA carrierUS destJFK
1 0 0 0 1 0 0 0 1
2 1 0 0 0 0 0 0 1
3 1 0 0 0 0 0 0 0

destLGA originDCA originIAD weather dayweek sched7 sched8 sched9 sched10
1 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
3 1 0 1 0 0 0 0 0 0

sched11 sched12 sched13 sched14 sched15 sched16 sched17 sched18 sched19
1 0 0 0 1 0 0 0 0 0
2 0 0 0 0 0 1 0 0 0
3 0 1 0 0 0 0 0 0 0

sched20 sched21
1 0 0
2 0 0
3 0 0

xtrain <- Xdel[train,]
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xnew <- Xdel[-train,]
ytrain <- del$delay[train]
ynew <- del$delay[-train]
m1=glm(delay~.,family=binomial,data=data.frame(delay=ytrain,xtrain))
summary(m1)

Call:
glm(formula = delay ~ ., family = binomial, data = data.frame(delay = ytrain,

xtrain))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.3065 -0.6850 -0.5193 -0.2764 2.6671

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.506462 0.674045 -0.751 0.452426
carrierDH -1.109683 0.587743 -1.888 0.059020 .
carrierDL -1.687451 0.521459 -3.236 0.001212 **
carrierMQ -0.510547 0.496381 -1.029 0.303697
carrierOH -2.262073 0.908804 -2.489 0.012808 *
carrierRU -0.838344 0.424301 -1.976 0.048175 *
carrierUA -1.602981 0.955408 -1.678 0.093387 .
carrierUS -1.941613 0.529565 -3.666 0.000246 ***
destJFK -0.005843 0.317887 -0.018 0.985336
destLGA 0.171454 0.327708 0.523 0.600841
originDCA -0.800683 0.413647 -1.936 0.052908 .
originIAD -0.319476 0.401076 -0.797 0.425714
weather 17.881818 500.451538 0.036 0.971497
dayweek 0.669711 0.161234 4.154 3.27e-05 ***
sched7 -0.168093 0.515374 -0.326 0.744305
sched8 0.338228 0.487051 0.694 0.487406
sched9 -0.450550 0.602829 -0.747 0.454826
sched10 -0.382502 0.601444 -0.636 0.524794
sched11 -0.578642 0.828878 -0.698 0.485113
sched12 0.614203 0.467384 1.314 0.188803
sched13 -0.232381 0.504607 -0.461 0.645143
sched14 0.973601 0.430169 2.263 0.023617 *
sched15 0.778466 0.454437 1.713 0.086706 .
sched16 0.528690 0.452783 1.168 0.242951
sched17 0.605440 0.422702 1.432 0.152056
sched18 0.169869 0.587675 0.289 0.772541
sched19 0.682830 0.500860 1.363 0.172783
sched20 0.922454 0.680325 1.356 0.175131
sched21 0.883470 0.441079 2.003 0.045180 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1312.7 on 1319 degrees of freedom
Residual deviance: 1134.9 on 1291 degrees of freedom
AIC: 1192.9

Number of Fisher Scoring iterations: 15

## prediction: predicted default probabilities for cases in test set
ptest <- predict(m1,newdata=data.frame(xnew),type="response")
data.frame(ynew,ptest)[1:10,]
## first column in list represents the case number of the test
## element
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ynew ptest
1 0 0.1417566
5 0 0.1046429
6 0 0.1675298
9 0 0.2081648
10 0 0.2576931
12 0 0.1164139
15 0 0.1359269
17 0 0.1300306
21 0 0.1094095
22 0 0.1325476

plot(ynew~ptest)

## coding as 1 if probability 0.5 or larger
gg1=floor(ptest+0.5) ## floor function; see help command
ttt=table(ynew,gg1)
ttt

gg1
0 1

0 712 2 # on-time flight in test data set
1 153 14 # delayed flight in test data set

error=(ttt[1,2]+ttt[2,1])/n2
error

0.1759364

7.7.1 The Lift

The lift chart explained and shown below gives us a quick way of identifying
those flights that are most likely to be delayed. For that, we order the cases in the
test (evaluation) sample according to their predicted probabilities of success. Cases
with large probabilities of success are listed first. Next to them we print the actual
results; we assume that we know these as we are evaluating what would have
happened if we had used this rule. We see that the cases we predict as successes
(cases with probabilities 0.5 or larger) are in fact actual successes (delayed flights).
The lift curve graphs the cumulative number of successes (after having sorted the
cases according to their predicted values in decreasing order) against the number of
cases. The reference line on this plot graphs the expected number of delayed flights,
assuming that the probability of delay is estimated by the proportion of delayed
flights in the evaluation sample, against the number of cases. The reference line
expresses the performance of the naı̈ve model. With 10 flights, for example, the
expected number of delayed flights is 10 p, where p is the proportion of delayed
flights in the evaluation sample (here it is 0.189). At the very end, the lift curve and
the reference line meet. However, at the beginning, our logistic regression leads
to a “lift.” Pick the 10 cases with the largest estimated success probabilities, as an
example. All 10 cases turn out to be delayed. A good lift curve is one that has a
very steep incline at the beginning of the curve. If the lift is close to the reference
line, then there is not much point in using the estimated model for classification.
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A major objective of classification rules is to identify those flights that will
be delayed, the buyers who are most likely to buy, or the companies that are
most likely to go bankrupt. We are not particularly interested in finding potential
customers who do not end up buying, as with tight budgets, we are not going to
waste precious selling efforts on people who are unlikely to buy. Defaults create
big losses and we want to identify those companies that are likely to go bankrupt.
But we may not be interested in identifying companies that do not go bankrupt, as
those companies will not create large losses for us. Such circumstances may actually
indicate that the costs of the two misclassification errors are not the same and that
the probability cutoff should be different from 0.5; more on that is discussed in
Section 7.9.

In our example of airline delays, the overall misclassification rate of the logistic
regression is not that different from that of the naı̈ve strategy that considers all
flights as being on-time. But, as the lift curve shows, flights with the largest prob-
abilities of being delayed are classified correctly. The logistic regression is quite
successful in identifying those flights as being delayed. One can think of those
cases as the “low hanging fruit” for easy harvest.

Below we list the 20 cases with the largest probabilities of success, together
with their actual outcomes. Among the 16 cases with probabilities larger than 0.50,
14 flights are actually delayed. The lift curve shows that the model gives us an
advantage (i.e., a nice “lift”) in detecting the most obvious flights that are going
to be delayed.

bb=cbind(ptest,ynew)

bb

bb1=bb[order(ptest,decreasing=TRUE),]

bb1

## order cases in test set according to their success prob

## actual outcome shown next to it

## overall success (delay) prob in the evaluation data set

xbar=mean(ynew)

xbar

## calculating the lift

## cumulative 1’s sorted by predicted values

## cumulative 1’s using the average success prob from

## evaluation set

axis=dim(n2)

ax=dim(n2)

ay=dim(n2)

axis[1]=1

ax[1]=xbar

ay[1]=bb1[1,2]

for (i in 2:n2) {

axis[i]=i

ax[i]=xbar*i

ay[i]=ay[i-1]+bb1[i,2]

}
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aaa=cbind(bb1[,1],bb1[,2],ay,ax)

aaa[1:100,]

Prob(S) Actual
1908 1.0000000 1 1 0.1895573
1850 1.0000000 1 2 0.3791146
1829 1.0000000 1 3 0.5686720
1877 1.0000000 1 4 0.7582293
1893 0.9999999 1 5 0.9477866
1868 0.9999999 1 6 1.1373439
1834 0.9999999 1 7 1.3269012
2102 0.9999999 1 8 1.5164586
1911 0.9999999 1 9 1.7060159
1823 0.9999999 1 10 1.8955732
1916 0.9999999 1 11 2.0851305
209 0.5740773 1 12 2.2746879
820 0.5740773 1 13 2.4642452
1254 0.5740773 1 14 2.6538025
1325 0.5740773 0 14 2.8433598
1849 0.5740773 0 14 3.0329171
288 0.4920023 1 15 3.2224745
821 0.4825933 0 15 3.4120318
1785 0.4728407 0 15 3.6015891
167 0.4698229 1 16 3.7911464
695 0.4698229 0 16 3.9807037
. . .

plot(axis,ay,xlab="number of cases",ylab="number of

+ successes", main="Lift: Cum successes sorted by

+ pred val/success prob")

points(axis,ax,type="l")
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The R program that we used to carry out the calculations, the logistic regression
as well as the lift curve, can be found on the webpage that accompanies this book.

7.8 EXAMPLE 3: LOAN ACCEPTANCE

The data are also taken from Shmueli et al. (2010). The data set contains informa-
tion on 5000 loan applications. The response is whether or not an offered loan had
been accepted on an earlier occasion. The explanatory variables include

Age of customer;
Experience: professional experience in years;
Income of customer;
Family size of customer;
CCAvg: average monthly credit card spending;
Mortgage: size of mortgage;
SecuritiesAccount: No/Yes;
CDAccount: No/Yes;
Online: No/Yes;
CreditCard: No/Yes;
Educational level: three categories (undergraduate, graduate, professional).

Sixty percent of the data (i.e., 3000 of the 5000 cases) are used for estimation
(training set); the remaining data (40%, or 2000 cases) are used for evaluation (as
a test data set). The data are separated into these two sets at random.

The overall success probability (with success defined as the acceptance of an
earlier loan) among all 5000 observations is 0.096; the success probability in the
training set is also 0.096. The logistic regression model, estimated on the training
set of 3000 cases, is used to predict the probabilities of success in the evaluation
data set.

The detailed logistic regression output (from R) shows that the relationships are
fairly strong.

summary(m2)

Call:
glm(formula = response ~ ., family = binomial,
data = data.frame(response = ytrain, xtrain))

Deviance Residuals:
Min 1Q Median 3Q Max

-2.9615 -0.1912 -0.0664 -0.0199 4.0850
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.255e+01 2.337e+00 -5.370 7.89e-08 ***
Age -5.384e-04 8.602e-02 -0.006 0.995006
Exp 5.044e-03 8.535e-02 0.059 0.952877
Inc 6.140e-02 3.942e-03 15.577 < 2e-16 ***
Fam2 -8.712e-02 2.972e-01 -0.293 0.769448
Fam3 1.948e+00 3.286e-01 5.927 3.08e-09 ***
Fam4 1.551e+00 3.088e-01 5.022 5.11e-07 ***
CCAve 1.903e-01 6.079e-02 3.130 0.001747 **
Mort 3.017e-04 7.525e-04 0.401 0.688445
SecAcc -1.064e+00 4.188e-01 -2.541 0.011067 *
CD 3.660e+00 4.640e-01 7.888 3.08e-15 ***
Online -7.200e-01 2.157e-01 -3.338 0.000844 ***
CreditCard -1.051e+00 2.972e-01 -3.537 0.000404 ***
Educ2 4.022e+00 3.596e-01 11.183 < 2e-16 ***
Educ3 4.005e+00 3.580e-01 11.186 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1910.65 on 2999 degrees of freedom
Residual deviance: 692.86 on 2985 degrees of freedom
AIC: 722.86

Number of Fisher Scoring iterations: 8

The estimated model is used to predict the probability of success for the cases
in the evaluation data set. Cases with success probabilities larger than 0.50 are
classified as “success.” The logistic regression classification approach is able to
reduce the classification error in the holdout set to 0.038. Of the 189 previously
accepted loans in the test (evaluation) data set, we predict 128 correctly (68%). Of
the 1811 nonaccepted loans, we predict 1796 correctly (99%).

## coding as 1 if probability 0.5 or larger

gg1=floor(ptest+0.5)

ttt=table(ynew,gg1)

gg1
ynew 0 1

0 1796 15 ## non accepted loans
1 61 128 ## accepted loans

error=(ttt[1,2]+ttt[2,1])/n2

error

[1] 0.038
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Below we show the 20 cases with the largest probabilities of success, as well
as their actual outcomes. All 20 cases are successes. The lift that we get from
the logistic regression is quite strong. The lift curve in the graph is quite steep in
the beginning and exceeds the reference line that connects the expected number
of successes using the relative frequency of success in the holdout period as an
estimate of the probability of success.

aaa[1:20,]

Prob(S) Actual
1133 0.9999017 1 1 0.0945
1180 0.9997186 1 2 0.1890
758 0.9996639 1 3 0.2835
626 0.9995217 1 4 0.3780
300 0.9994912 1 5 0.4725
216 0.9993812 1 6 0.5670
1598 0.9991014 1 7 0.6615
840 0.9987773 1 8 0.7560
1725 0.9987519 1 9 0.8505
373 0.9984118 1 10 0.9450
1605 0.9983513 1 11 1.0395
1121 0.9977243 1 12 1.1340
764 0.9975621 1 13 1.2285
21 0.9972330 1 14 1.3230
888 0.9969690 1 15 1.4175
1531 0.9969300 1 16 1.5120
643 0.9968237 1 17 1.6065
714 0.9961473 1 18 1.7010
1741 0.9960146 1 19 1.7955
1837 0.9949948 1 20 1.8900
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7.9 EXAMPLE 4: GERMAN CREDIT DATA

The German credit data set was obtained from the UCI (University of California at
Irwin) Machine Learning Repository (Asuncion and Newman, 2007). The data set,
which contains attributes and outcomes on 1000 loan applications, was provided in
1994 by Professor Dr. Hans Hofmann of the Institut fuer Statistik und Oekonometrie
at the University of Hamburg. It has served as an important test data set for several
credit-scoring algorithms. A description of the variables is given in the word file
germancreditDescription that can also be found on the webpage for this book.

Assume that, on average, lending into default is five times as costly as not
lending to a good debtor (assume that this latter cost is 1). Here default is defined as
“success.” Suppose we estimate a certain p for the probability of default. Then the
expected costs are 5p if we make the loan, and 1(1 − p) if we refuse the loan. Hence
if 5p < 1 − p, we expect to lose less by loaning than by turning away business.
This implies the following decision rule: make the loan if the probability of default
p < 1/6. Predict default (“success”) whenever p > 1/6. This is an example where
knowledge about the relative costs of misclassification impacts the choice of the
probability cutoff.

Below we analyze the German credit data; this data set will also be used in later
chapters (e.g., Chapter 9 on nearest neighbor classification). The two outcomes
are success (defaulting on the loan), and failure (not defaulting). We use logistic
regression to estimate the probability of default, using continuous variables (dura-
tion, amount, installment, age) and categorical variables (loan history, purpose,
foreign, rent) as explanatory variables.

We randomly select 900 of the 1000 cases for the training set, and put the
remaining 100 cases into the test set. The performance of the logistic regression
model for the test data set is as follows: the logistic regression recognizes 23 of the
28 defaults (or 82%), but predicts as defaults 42 of the 72 good loans (or 58%).

The R program and its output are listed below. The R program can also be
found on the webpage that accompanies this book.

#### ******* German Credit Data ******* ####
#### ******* data on 1000 loans ******* ####

## read data and create some ‘interesting’ variables
credit <- read.csv("C:/DataMining/Data/germancredit.csv")
credit

Default: 0 (no) and 1 (yes)

Attribute 1: (qualitative) Status of existing checking account
A11 : … < 0 DM
A12 : 0 <= … < 200 DM
A13 : … >= 200 DM / salary assignments for at least 1 year
A14 : no checking account

Attribute 2: (numerical) Duration in month
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Attribute 3: (qualitative) Credit history
A30 : no credits taken/ all credits paid back duly
A31 : all credits at this bank paid back duly
A32 : existing credits paid back duly till now
A33 : delay in paying off in the past
A34 : critical account/ other credits existing (not at this bank)

Attribute 4: (qualitative) Purpose
A40 : car (new)
A41 : car (used)
A42 : furniture/equipment
A43 : radio/television
A44 : domestic appliances
A45 : repairs
A46 : education
A47 : (vacation - does not exist?)
A48 : retraining
A49 : business
A410 : others

Attribute 5: (numerical) Credit amount

Attribute 6: (qualitative) Savings account/bonds
A61 : … < 100 DM
A62 : 100 <= … < 500 DM
A63 : 500 <= … < 1000 DM
A64 : .. >= 1000 DM
A65 : unknown/ no savings account

Attribute 7: (qualitative) Present employment since
A71 : unemployed
A72 : … < 1 year
A73 : 1 <= … < 4 years
A74 : 4 <= … < 7 years
A75 : .. >= 7 years

Attribute 8: (numerical) Installment rate in percentage of
disposable income

Attribute 9: (qualitative) Personal status and sex
A91 : male : divorced/separated
A92 : female : divorced/separated/married
A93 : male : single
A94 : male : married/widowed
A95 : female : single

Attribute 10: (qualitative) Other debtors / guarantors
A101 : none
A102 : co-applicant
A103 : guarantor

Attribute 11: (numerical) Present residence since

Attribute 12: (qualitative) Property
A121 : real estate
A122 : if not A121 : building society savings agreement/ life insurance
A123 : if not A121/A122 : car or other, not in attribute 6
A124 : unknown / no property

Attribute 13: (numerical) Age in years

www.it-ebooks.info

http://www.it-ebooks.info/


EXAMPLE 4: GERMAN CREDIT DATA 105

Attribute 14: (qualitative) Other installment plans
A141 : bank
A142 : stores
A143 : none

Attribute 15: (qualitative) Housing
A151 : rent
A152 : own
A153 : for free

Attribute 16: (numerical) Number of existing credits at this bank

Attribute 17: (qualitative) Job
A171 : unemployed/ unskilled - non-resident
A172 : unskilled - resident
A173 : skilled employee / official
A174 : management/ self-employed/

highly qualified employee/ officer

Attribute 18: (numerical) Number of people being liable to provide
maintenance for

Attribute 19: (qualitative) Telephone
A191 : none
A192 : yes, registered under the customers name

Attribute 20: (qualitative) foreign worker
A201 : yes
A202 : no

credit$Default <- factor(credit$Default)

## re-level the credit history and a few other variables
credit$history = factor(credit$history, levels=c("A30","A31","A32",

+ "A33","A34"))
levels(credit$history) = c("good","good","poor","poor","terrible")
credit$foreign <- factor(credit$foreign, levels=c("A201","A202"),

+ labels=c("foreign","german"))
credit$rent <- factor(credit$housing=="A151")
credit$purpose <- factor(credit$purpose, levels=c("A40","A41","A42",

+ "A43","A44","A45","A46","A47","A48","A49","A410"))
levels(credit$purpose) <- c("newcar","usedcar",rep("goods/repair",4),

+ "edu",NA, "edu","biz","biz")

## for demonstration, cut the dataset to these variables
credit <- credit[,c("Default","duration","amount","installment",

+ "age","history","purpose","foreign","rent")]
credit[1:3,]

Default duration amount installment age history purpose foreign rent
1 0 6 1169 4 67 terrible goods/repair foreign FALSE
2 1 48 5951 2 22 poor goods/repair foreign FALSE
3 0 12 2096 2 49 terrible edu foreign FALSE

summary(credit) # check out the data

Default duration amount installment age
0:700 Min. : 4.0 Min. : 250 Min. :1.000 Min. :19.00
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1:300 1st Qu.:12.0 1st Qu.: 1366 1st Qu.:2.000 1st Qu.:27.00
Median :18.0 Median : 2320 Median :3.000 Median :33.00
Mean :20.9 Mean : 3271 Mean :2.973 Mean :35.55
3rd Qu.:24.0 3rd Qu.: 3972 3rd Qu.:4.000 3rd Qu.:42.00
Max. :72.0 Max. :18424 Max. :4.000 Max. :75.00

history purpose foreign rent
good : 89 newcar :234 foreign:963 FALSE:821
poor :618 usedcar :103 german : 37 TRUE :179
terrible:293 goods/repair:495

edu : 59
biz :109

## create a design matrix
## factor variables are turned into indicator variables
## the first column of ones is omitted
Xcred <- model.matrix(Default~.,data=credit)[,-1]
Xcred[1:3,]

duration amount installment age historypoor historyterrible purposeusedcar
1 6 1169 4 67 0 1 0
2 48 5951 2 22 1 0 0
3 12 2096 2 49 0 1 0

purposegoods/repair purposeedu purposebiz foreigngerman rentTRUE
1 1 0 0 0 0
2 1 0 0 0 0
3 0 1 0 0 0

## creating training and prediction datasets
## select 900 rows for estimation and 100 for testing
set.seed(1)
train <- sample(1:1000,900)
xtrain <- Xcred[train,]
xnew <- Xcred[-train,]
ytrain <- credit$Default[train]
ynew <- credit$Default[-train]
credglm=glm(Default~.,family=binomial,data=data.frame(Default=ytrain,

+ xtrain))
summary(credglm)

Call:
glm(formula = Default ~ ., family = binomial, data = data.frame

(Default = ytrain, xtrain))

Deviance Residuals:
Min 1Q Median 3Q Max

-2.2912 -0.7951 -0.5553 0.9922 2.2601

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.705e-01 4.833e-01 -0.560 0.575693
duration 2.721e-02 8.464e-03 3.215 0.001303 **
amount 9.040e-05 3.854e-05 2.346 0.018987 *
installment 2.228e-01 8.064e-02 2.763 0.005722 **
age -1.327e-02 7.704e-03 -1.723 0.084961 .
historypoor -1.102e+00 2.641e-01 -4.173 3.01e-05 ***
historyterrible -1.860e+00 3.007e-01 -6.184 6.25e-10 ***
purposeusedcar -1.793e+00 3.555e-01 -5.043 4.58e-07 ***
purposegoods.repair -7.447e-01 1.976e-01 -3.769 0.000164 ***
purposeedu -6.809e-02 3.401e-01 -0.200 0.841325
purposebiz -7.342e-01 2.916e-01 -2.518 0.011812 *
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foreigngerman -1.363e+00 6.638e-01 -2.053 0.040054 *
rentTRUE 7.011e-01 2.075e-01 3.378 0.000730 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1102.92 on 899 degrees of freedom
Residual deviance: 955.21 on 887 degrees of freedom
AIC: 981.21

Number of Fisher Scoring iterations: 5

## Now to prediction: what are the underlying default probabilities
## for cases in the test set

ptest <- predict(credglm, newdata=data.frame(cnew),type="response")
data.frame(ynew,ptest)

ynew ptest
16 1 0.29285579
18 0 0.65821629
19 1 0.25582878
26 0 0.11059259
27 0 0.39183380
43 0 0.23061764
44 0 0.12544267
50 0 0.25283649
61 0 0.16128056
. . .

## What are our misclassification rates on that training set?
## We use probability cutoff 1/6
## coding as 1 (predicting default) if probability 1/6 or larger
gg1=floor(ptest+(5/6))
ttt=table(ynew,gg1)
ttt

gg1
ynew 0 1

0 30 42 ## no default in evaluation (test) data set
1 5 23 ## default in evaluation (test) data set

error=(ttt[1,2]+ttt[2,1])/100
error
[1] 0.47
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CHAPTER 8

Binary Classification, Probabilities,
and Evaluating Classification
Performance

8.1 BINARY CLASSIFICATION

Many decision problems can be reduced to a binary classification. Let us define 1 as
“success” and 0 as “failure.” In order to make a decision on a new case, we need to
estimate its success probability p = P [y = 1]. In a previous chapter (Chapter 7),
we have illustrated how to estimate this probability through logistic regression.
Once we know p̂, the estimated probability of y = 1, and after having decided
on an appropriate cutoff for the probability, we can make a decision and assess
its risk.

8.2 USING PROBABILITIES TO MAKE DECISIONS

There are two ways to go wrong in a binary problem: A false positive error occurs
if we predict ŷ = 1 when y = 0. A false negative error occurs if we predict ŷ = 0
when y = 1.

The false positive rate is defined as the number of misclassified negatives (actual
negatives classified as positives) divided by the number of negatives. Or, to put
this in another way, the false positive rate is the proportion of absent events that
yield positive test outcomes. It is the conditional probability of a positive test result
given that the event we look for is absent.

The false negative rate is the number of misclassified positives (actual positives
classified as negatives) divided by the number of positives. The false negative
rate is the proportion of present events that yield negative test outcomes. It is the
conditional probability of a negative test result given that the event we look for
has taken place.

The cutoff on the (estimated) probability of success determines how items are
classified. How do we decide on this cutoff? In Section 7.9 (German credit data),
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we discussed whether or not to extend a loan. Assume that, on average, lending
into default is 5 times as costly as not lending to a good debtor. Here default is
defined as “success.” Suppose p is the probability of default. Then the expected
costs are 5p if we make the loan, and 1(1 − p) if we refuse to make the loan.
If 5p < 1 − p, we expect to lose less by loaning than by turning away business.
This implies the following decision rule: make the loan if the probability of default
p < 1/6. Refuse the loan and predict default (“success”) whenever p > 1/6. In
this example, the cutoff depends on the two different costs of misclassifications.
If the two misclassification costs are the same, we classify a new case as success
if its estimated probability of success exceeds 0.5 (we refer to this as the majority
rule).

8.3 SENSITIVITY AND SPECIFICITY

The classification rule depends on the class probability and on the probability cutoff.
We call a classification rule sensitive if it predicts 1 for most y = 1 obser-

vations, and specific if it predicts 0 for most y = 0 observations. Sensitivity is
the proportion of observed positives classified correctly (this is the same as 1 −
the false negative rate). Specificity is the proportion of observed negatives classified
correctly (this is the same as 1 − the false positive rate). Sensitivity and specificity
depend on the cutoff for the estimated probability. It is common to calculate sensi-
tivity and specificity for changing cutoffs, and plot sensitivity (i.e., the proportion
of observed positives classified correctly) against 1 − specificity (i.e., the false
positive rate). The resulting function is called the receiver operating characteristic
(ROC) function (the terminology comes from signal processing). The cutoff on the
probability affects the trade-off between sensitivity and specificity, and the ROC
curve illustrates this graphically. Ideally, we want the ROC curve to be attracted to
the top-left corner of the graph, with a very fast rise to the upper horizontal line at
1 and a large area under the curve. We want high sensitivity (predicting positives
correctly) for a low false positive rate.

We can use the ROC curve to select among several classification methods. A
commonly used design criterion looks at the area under the ROC curve and selects
the classification method that maximizes this area.

8.4 EXAMPLE: GERMAN CREDIT DATA

Let us go back to Section 7.9 on logistic regression where we analyzed the German
credit data. For cutoff 1/6, the decision rule performed as follows in the holdout
sample of 100 firms: 23 of 28 (82%) of defaulters are being recognized, while 30 of
72 (42%) of good loans are being made. This implies sensitivity 0.82 and specificity
30/72 = 0.42. The coordinates (sensitivity = 0.82, 1 − specificity = 0.58) define
one point on the ROC curve. Another point on this curve is obtained with cutoff
0.50. Then, sensitivity = 8/28 = 0.29 and specificity = 68/72 = 0.94, for another
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point on the ROC curve (sensitivity = 0.29, 1 − specificity = 0.06). The R pro-
gram given below, roc, calculates and graphs the ROC curve. We get this curve
by varying the cutoff on the probability. The ROC curves that assess the predic-
tive quality of the classification rule on the holdout sample of 100 observations
(the left graph) and on the complete data set of all 1000 cases (in-sample eval-
uation; right graph) are shown below. Specified values on sensitivity and speci-
ficity imply a certain value for the probability cutoff. Of course, for certain data
and models no cutoff may achieve the given desired properties on sensitivity
and specificity; this implies that the desired sensitivity and specificity cannot be
attained.

We have written the R macro roc for graphing the ROC curve. Alternatively,
one can use functions in the R package ROCR. The syntax for ROCR is also
attached.
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#### ******* German Credit Data ******* ####
#### ******* data on 1000 loans ******* ####

## read data and create some ‘interesting’ variables
credit <- read.csv("C:/DataMining/Data/germancredit.csv")
credit
credit$Default <- factor(credit$Default)

## re-level the credit history and a few other variables
credit$history = factor(credit$history, levels=c("A30","A31","A32",

+ "A33","A34"))
levels(credit$history) = c("good","good","poor","poor","terrible")
credit$foreign <- factor(credit$foreign, levels=c("A201","A202"),

+ labels=c("foreign","german"))
credit$rent <- factor(credit$housing=="A151")
credit$purpose <- factor(credit$purpose, levels=c("A40","A41","A42",

+ "A43","A44","A45","A46","A47","A48","A49","A410"))
levels(credit$purpose) <-c("newcar","usedcar",rep("goods/repair",4),

+ "edu",NA,"edu","biz","biz")

## for demonstration, cut the data set to these variables
credit <- credit[,c("Default","duration","amount","installment","age",

+ "history", "purpose","foreign","rent")]
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credit
summary(credit) # check out the data

## create a design matrix
## factor variables are turned into indicator variables
## the first column of ones is omitted
Xcred <- model.matrix(Default~.,data=credit)[,-1]
Xcred[1:3,]

duration amount installment age historypoor historyterrible purposeusedcar
1 6 1169 4 67 0 1 0
2 48 5951 2 22 1 0 0
3 12 2096 2 49 0 1 0
purposegoods/repair purposeedu purposebiz foreigngerman rentTRUE

1 1 0 0 0 0
2 1 0 0 0 0
3 0 1 0 0 0

## creating training and prediction datasets
## select 900 rows for estimation and 100 for testing
set.seed(1)
train <- sample(1:1000,900)
xtrain <- Xcred[train,]
xnew <- Xcred[-train,]
ytrain <- credit$Default[train]
ynew <- credit$Default[-train]
credglm=glm(Default~.,family=binomial,data=data.frame(Default=ytrain,

+ xtrain))
summary(credglm)

Call:
glm(formula = Default ~ ., family = binomial,

data = data.frame(Default = ytrain, xtrain))

Deviance Residuals:
Min 1Q Median 3Q Max

-2.2912 -0.7951 -0.5553 0.9922 2.2601

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.705e-01 4.833e-01 -0.560 0.575693
duration 2.721e-02 8.464e-03 3.215 0.001303 **
amount 9.040e-05 3.854e-05 2.346 0.018987 *
installment 2.228e-01 8.064e-02 2.763 0.005722 **
age -1.327e-02 7.704e-03 -1.723 0.084961 .
historypoor -1.102e+00 2.641e-01 -4.173 3.01e-05 ***
historyterrible -1.860e+00 3.007e-01 -6.184 6.25e-10 ***
purposeusedcar -1.793e+00 3.555e-01 -5.043 4.58e-07 ***
purposegoods.repair -7.447e-01 1.976e-01 -3.769 0.000164 ***
purposeedu -6.809e-02 3.401e-01 -0.200 0.841325
purposebiz -7.342e-01 2.916e-01 -2.518 0.011812 *
foreigngerman -1.363e+00 6.638e-01 -2.053 0.040054 *
rentTRUE 7.011e-01 2.075e-01 3.378 0.000730 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 1102.92 on 899 degrees of freedom
Residual deviance: 955.21 on 887 degrees of freedom
AIC: 981.21

Number of Fisher Scoring iterations: 5

## Now to prediction: what are the underlying default probabilities
## for cases in the test set
ptest <- predict(credglm, newdata=data.frame(xnew),type="response")
data.frame(ynew,ptest)

ynew ptest
16 1 0.29285579
18 0 0.65821629
19 1 0.25582878
26 0 0.11059259
27 0 0.39183380
43 0 0.23061764
44 0 0.12544267
50 0 0.25283649
61 0 0.16128056
. . .

## What are our misclassification rates on that training set?
## We use probability cutoff 1/6
## coding as 1 (predicting default) if probability 1/6 or larger
gg1=floor(ptest+(5/6))
ttt=table(ynew,gg1)
ttt

gg1
ynew 0 1

0 30 42 ## no default in evaluation (test) data set
1 5 23 ## default in evaluation (test) data set

truepos < - ynew==1 & ptest >=cut
trueneg < - ynew==0 & ptest < cut
# Sensitivity (predict default when it does happen)
sum(truepos)/sum(ynew==1)

[1] 0.8214286

# Specificity (predict no default when it does not happen)
sum(trueneg)/sum(ynew==0)

[1] 0.4166667

## Next, we use probability cutoff 1/2
## coding as 1 if probability 1/2 or larger
cut=1/2
gg1=floor(ptest+(1-cut))
ttt=table(ynew,gg1)
ttt
error=(ttt[1,2]+ttt[2,1])/100
error

gg1
ynew 0 1
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0 68 4
1 20 8

truepos < - ynew==1 & ptest > =cut
trueneg < - ynew==0 & ptest < cut
# Sensitivity (predict default when it does happen)
sum(truepos)/sum(ynew==1)

[1] 0.2857143

# Specificity (predict no default when it does not happen)
sum(trueneg)/sum(ynew==0)

[1] 0.9444444

## R macro for plotting the ROC curve
## plot the ROC curve for classification of y with p
roc <- function(p,y){
y <- factor(y)
n <- length(p)
p <- as.vector(p)
Q < - p > matrix(rep(seq(0,1,length=500),n),ncol=500,byrow=TRUE)
fp < - colSums((y==levels(y)[1])*Q)/sum(y==levels(y)[1])
tp < - colSums((y==levels(y)[2])*Q)/sum(y==levels(y)[2])
plot(fp, tp, xlab="1-Specificity", ylab="Sensitivity")
abline(a=0,b=1,lty=2,col=8)

}

## ROC for hold-out period
roc(p=ptest,y=ynew)

## ROC for all cases (in-sample)
credglmall <- glm(credit$Default ~ Xcred,family=binomial)
roc(p=credglmall$fitted, y=credglmall$y)

## using the ROCR package to graph the ROC curves
library(ROCR)
## input is a data frame consisting of two columns
## predictions in first column and actual outcomes in the second

## ROC for hold-out period
predictions=ptest
labels=ynew
data=data.frame(predictions,labels)
data
## pred: function to create prediction objects
pred <- prediction(data$predictions,data$labels)
pred
## perf: creates the input to be plotted
## sensitivity and one minus specificity (the false positive rate)
perf <- performance(pred, "sens", "fpr")
perf
plot(perf)

## ROC for all cases (in-sample)
credglmall <- glm(credit$Default ~ Xcred,family=binomial)
predictions=credglmall$fitted
labels=credglmall$y
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data=data.frame(predictions,labels)
pred <- prediction(data$predictions,data$labels)
perf <- performance(pred, "sens", "fpr")
plot(perf)

The R program can be found on the webpage that accompanies this book.
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CHAPTER 9

Classification Using a Nearest
Neighbor Analysis

In classification, we start with a training set of objects with information on their
group membership (an object can be from one of g ≥ 2 possible groups) and
a set of their measurable characteristics (also referred to as the features). The
information we have on the training set is used to predict the unknown group
membership of a new set of objects that are solely described by their measurable
characteristics.

EXAMPLE 9.1 We have available a set of glass shards from six possible glass
types (g = 6 groups):

WinF: float glass window,
WinNF: nonfloat glass window,
Veh: vehicle window,
Con: container (bottles),
Tabl: tableware,
Head: vehicle headlamp.

We know the group membership of each shard and we have available mea-
surements on shard characteristics such as the refractive index (RI), and percent-
ages of Na, Mg, Al, Si, K, Ca, Ba, and Fe. The measurable variables are often
referred to as the features. Here we are dealing with nine features. Features of
the various objects can be visualized as lying in a feature space of dimension
d = 9.

We are presented with a new shard and its measured characteristics, but not its
group membership. How can we infer (predict) the new shard’s membership?

EXAMPLE 9.2 We have available the outcomes on several loans (no
default/default; here there are just g = 2 groups) that are characterized by their
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features such as the amount of the loan borrowed, duration of the loan, interest
rate of the loan, and characteristics of the borrower (income, whether borrower
has a job, and so on)

A new customer walks through the door. We are told the characteristics of the
loan and of the borrower. How can we predict the eventual outcome of the loan?

9.1 THE K-NEAREST NEIGHBOR ALGORITHM

One useful method for making the classification relies on the k -nearest neighbor
algorithm. The k -nearest neighbor (knn) algorithm classifies new objects according
to the outcome of the closest object or the outcomes of several closest objects in
the feature space of the training set. The k -nearest neighbor algorithm is among the
simplest of all machine learning algorithms: an object is classified by a majority
vote of its neighbors, with the new object being assigned to the class that is most
common among its k nearest neighbors (k is a positive integer, and typically
small).

Here is a detailed explanation of how the k -nearest neighbor algorithm works.
Take an object with d features (but unknown group membership). Calculate the
distance of this object (distance is defined below) to every one of the objects in the
training set (which have known group membership). Look at the k closest neighbors
in the training set. Look at how the closest k neighbors are classified and determine
the most frequent classification. This becomes the (predicted) classification of the
object. If there are ties among the outcomes of its k -nearest neighbors, all tied
candidates are included in a vote and ties are broken at random. If k = 1, the
object is simply assigned to the class of its very nearest neighbor.

The neighbors are taken from a set of objects for which the correct classification
is known. This can be thought of as the training set for the algorithm, although
no explicit training step is required. The training samples are vectors in a multi-
dimensional feature space, each with a specified class label. The training phase of
the algorithm only consists of storing the feature vectors and class labels of the
training samples.

In the classification phase, k is a user-defined constant, and a new object with
given features (sometimes also referred to as a query or test point) is classified by
assigning to it the label that is most frequent among the k training samples nearest
to that new object.

Usually, with continuous features (such as income in multiples of $1000, or age
in years), the Euclidean distance is used as the distance metric. Assume that the
d features for case 1 are given by x11, x12, . . . , x1d and that the features for case
2 are given by x21, x22, . . . , x2d . Then the Euclidean distance between cases 1 and
2 is defined as

√
(x11 − x21)

2 + (x12 − x22)
2 + · · · + (x1d − x2d )2. If there is only

one feature, the Euclidean distance is the absolute value of the difference. It is
usually recommended to standardize the feature variables if their units are quite
different. Otherwise, more weight would be given to feature variables with larger
units.
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For categorical features (gender, or age classified as young, middle-aged, and
old) other metrics can be used. The overlap metric (also called the Hamming
distance), for example, creates for two strings of equal length a sequence of mis-
matches and matches between corresponding positions of the two feature vectors,
and then counts the number of mismatches. The distance is small if there are few
mismatches.

A drawback of the basic “majority voting” classification of the k -nearest neigh-
bor algorithm is that classes with more frequent outcomes tend to dominate the
classification of the new object. Because of their large numbers, they tend to show
up more often among the k -nearest neighbors when neighbors are computed. Ways
of overcoming this problem are discussed in the literature, but are not included in
our introductory discussion.

The k -nearest neighbor algorithm is sensitive to the local structure of the data,
and its accuracy is affected by the presence of noisy or irrelevant features. The
best choice of k depends upon the data. Larger values of k tend to reduce the
effect of noise on the classification, but will make boundaries between classes less
distinct. A good value of k can be selected by cross-validation. In binary (two-
class) classification problems, it is helpful to choose k to be an odd number as this
avoids tied votes.

The “naı̈ve” (brute force) version of the algorithm is easy to implement. How-
ever, computing the distances from a test sample to all objects in the training set
is computationally intensive, especially when the size of the training set is large.
Many nearest neighbor search algorithms have been proposed, which seek to reduce
the number of distance evaluations that need to be performed. Using an appropriate
nearest neighbor search algorithm makes the procedure computationally tractable
even for very large data sets. A reliable algorithm, knn, can be found in the R
package class. In the following discussion we list R programs for two examples
and we comment on the resulting output.

9.2 EXAMPLE 1: FORENSIC GLASS

We analyze the data set of 214 glass shards of six possible glass types (g = 6
groups):

WinF: float glass window,
WinNF: nonfloat window,
Veh: vehicle window,
Con: container (bottles),
Tabl: tableware,
Head: vehicle headlamp.

We know the group membership of each shard and we have available measurements
on shard characteristics including the refractive index (RI) and the percentages of
Na, Mg, Al, Si, K, Ca, Ba, and Fe.
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The forensic glass data set is taken from the UCI (University of California at
Irwin) Machine Learning Repository (Asuncion and Newman, 2007). The data set
was provided in 1987 by Vina Spiehler and B. German of the Home Office Forensic
Science Service, Reading, Berkshire RG7 4PN. It has been used as a test case for
numerous classification algorithms.

Box plots of the nine feature variables, stratified for the six different shard
groups, show how features vary across glass types. These graphs suggest that it
may be feasible to classify a shard on the basis of its features. Next, we select 200
shards for the training set and the remaining 14 shards as the test (holdout) data
set. The nearest neighbor method, with various values for the number of nearest
neighbors k , is used to classify the 14 shards. Initially, our distance calculations
use only the RI and the percentage of Al. With just two features it is quite easy
to see graphically how nearest neighbor methods arrive at their classification. The
scatter plots shown below represent the 14 shards of the test data set by solid
symbols, while the 200 shards of the training set are represented by open sym-
bols. The color of the symbol represents the type of glass. For example, in the
nearest neighbor method with k = 1 (the scatter plot on the left side of the figure)
the test shard is classified blue (container glass) if the closest shard in the train-
ing set is also blue (container glass). The most common glass type of the closest
five neighbors (k = 5) determines the classification of each test case in the scatter
plot on the right side. 11 of the 14 shards (or 78.6%) are correctly classified with
k = 1, and 10 of the 14 shards (or 71.4%) are correctly classified with k = 5.
These proportions will change, often considerably, with different random samples.
Cross-validation, where each of the 214 shards is left out and classified one at
a time, provides a better (more stable) assessment of how the number of nearest
neighbors affects the proportion of correct classifications. The proportions of cor-
rect classification from cross-validation with varying numbers of nearest neighbors
k range between 61% and 65% and change little with the number of nearest neigh-
bors. Using all nine features improves the proportion of correct classification to
about 71%. Using three nearest neighbors appears to work best, even though the
proportion of correct classification for the single closest neighbor (k = 1) is quite
similar.

#### ******* Forensic Glass ****** ####

library(textir) ## needed to standardize the data

library(MASS) ## a library of example data sets

data(fgl) ## loads the data into R; see help(fgl)

fgl

## data consists of 214 cases

## here are illustrative box plots of the features

## stratified by glass type

par(mfrow=c(3,3), mai=c(.3,.6,.1,.1))

plot(RI ~ type, data=fgl, col=c(grey(.2),2:6))

plot(Al ~ type, data=fgl, col=c(grey(.2),2:6))
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plot(Na ~ type, data=fgl, col=c(grey(.2),2:6))

plot(Mg ~ type, data=fgl, col=c(grey(.2),2:6))

plot(Ba ~ type, data=fgl, col=c(grey(.2),2:6))

plot(Si ~ type, data=fgl, col=c(grey(.2),2:6))

plot(K ~ type, data=fgl, col=c(grey(.2),2:6))

plot(Ca ~ type, data=fgl, col=c(grey(.2),2:6))

plot(Fe ~ type, data=fgl, col=c(grey(.2),2:6))
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WinF TablVeh
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WinF TablVeh WinF TablVeh

WinF TablVeh WinF TablVeh

–5
0

0
0 6

8
10

12
14

16

1
2

3
4

5
6

1
2

3
4

5
10

15

R
I

M
g

0.
5

1.
5

2.
5

3.
5

A
l

11
12

13
14

15
16

17

N
a

0.
0

1.
0

2.
0

3.
0

B
a

70
71

72
73

74
75

S
i

K C
a

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

F
e

## for illustration, consider the RIxAl plane

## use nt=200 training cases to find the nearest neighbors for

## the remaining 14 cases. These 14 cases become the

## evaluation (test, hold-out) cases
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n=length(fgl$type)

nt=200

set.seed(1)

## to make the calculations reproducible in repeated runs

train <- sample(1:n,nt)

## Standardization of the data is preferable, especially if

## units of the features are quite different

## could do this from scratch by calculating the mean and

## standard deviation of each feature, and use those to

## standardize.

## Even simpler, use the normalize function in the R-package

## textir; it converts data frame columns to mean 0 and sd 1

x <- normalize(fgl[,c(4,1)])

x[1:3,]

library(class)

nearest1 <- knn(train=x[train,],test=x[-train,],

+ cl=fgl$type[train],k=1)

nearest5 <- knn(train=x[train,],test=x[-train,],

+ cl=fgl$type[train],k=5)

data.frame(fgl$type[-train],nearest1,nearest5)

fgl.type..train. nearest1 nearest5
1 WinF WinF WinF
2 WinF WinF WinF
3 WinF WinF WinF
4 WinF WinF WinF
5 WinF WinF WinF
6 WinF WinF WinNF
7 WinF WinF WinF
8 WinNF WinNF WinNF
9 WinNF Head Head
10 WinNF WinNF WinNF
11 WinNF WinNF WinNF
12 WinNF WinNF WinNF
13 Con Head WinNF
14 Tabl Head Head

## plot them to see how it worked on the training set

par(mfrow=c(1,2))

## plot for k=1 (single) nearest neighbor

plot(x[train,],col=fgl$type[train],

+ cex=.8,main="1-nearest neighbor")

points(x[-train,],bg=nearest1,pch=21,col=grey(.9),cex=1.25)

## plot for k=5 nearest neighbors

plot(x[train,],col=fgl$type[train],cex=.8,

+ main="5-nearest neighbors")

points(x[-train,],bg=nearest5,pch=21,col=grey(.9),cex=1.25)
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legend("topright",legend=levels(fgl$type),

+ fill=1:6,bty="n",cex=.75)
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## calculate the proportion of correct classifications on this one
## training set

pcorrn1=100*sum(fgl$type[-train]==nearest1)/(n-nt)
pcorrn5=100*sum(fgl$type[-train]==nearest5)/(n-nt)
pcorrn1

[1] 78.57143

pcorrn5

[1] 71.42857

## cross-validation (leave one out)
pcorr=dim(10)
for (k in 1:10) {
pred=knn.cv(x,fgl$type,k)
pcorr[k]=100*sum(fgl$type==pred)/n
}
pcorr

[1] 62.61682 61.21495 61.68224 61.68224 64.48598 61.21495 62.14953 62.14953
[9] 63.55140 63.55140

## Note: Different runs may give you slightly different results as
## ties are broken at random

## using all nine dimensions (RI plus 8 chemical concentrations)

x <- normalize(fgl[,c(1:9)])
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nearest1 <- knn(train=x[train,],test=x[-train,],
+ cl=fgl$type[train],k=1)
nearest5 <- knn(train=x[train,],test=x[-train,],

+ cl=fgl$type[train],k=5)
data.frame(fgl$type[-train],nearest1,nearest5)

fgl.type..train. nearest1 nearest5
1 WinF WinF WinF
2 WinF Veh WinF
3 WinF WinF WinF
4 WinF WinNF WinNF
5 WinF WinF WinF
6 WinF WinF WinF
7 WinF WinF WinF
8 WinNF WinNF WinNF
9 WinNF WinNF WinNF
10 WinNF Veh WinNF
11 WinNF WinNF WinNF
12 WinNF WinF WinNF
13 Con Con Con
14 Tabl Tabl Tabl

## calculate the proportion of correct classifications on this one
## training set

pcorrn1=100*sum(fgl$type[-train]==nearest1)/(n-nt)
pcorrn5=100*sum(fgl$type[-train]==nearest5)/(n-nt)
pcorrn1

[1] 71.42857

pcorrn5

[1] 92.85714

## cross-validation (leave one out)

pcorr=dim(10)
for (k in 1:10) {
pred=knn.cv(x,fgl$type,k)
pcorr[k]=100*sum(fgl$type==pred)/n
}
pcorr

[1] 70.09346 70.09346 71.02804 68.22430 67.28972 64.95327 65.42056 66.35514
[9] 65.88785 66.35514

9.3 EXAMPLE 2: GERMAN CREDIT DATA

This data was considered in Chapter 7 on logistic regression (Section 7.9). The
two outcomes are success (defaulting on the loan) and failure (not defaulting). The
explanatory variables in the logistic regression included features of the loan and
characteristics of the borrower. In the subsequent k -means classification we use
the three continuous variables, duration, amount, and installment. Cross-validation
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shows that the method with k = 5 nearest neighbors correctly identifies about 65%
of the outcomes.

#### ******* German Credit Data ******* ####
#### ******* data on 1000 loans ******* ####

library(textir) ## needed to standardize the data
library(class) ## needed for knn

## read data and create some ‘interesting’ variables
credit <- read.csv("C:/DataMining/Data/germancredit.csv")
credit

credit$Default <- factor(credit$Default)

## re-level the credit history and a few other variables
credit$history = factor(credit$history, levels=c("A30","A31","A32",

+ "A33","A34"))
levels(credit$history) = c("good","good","poor","poor","terrible")
credit$foreign <- factor(credit$foreign, levels=c("A201","A202"),

+ labels=c("foreign","german"))
credit$rent <- factor(credit$housing=="A151")
credit$purpose <- factor(credit$purpose, levels=c("A40","A41","A42",

+ "A43","A44","A45","A46","A47","A48","A49","A410"))
levels(credit$purpose) <-c("newcar","usedcar",rep("goods/repair",4),

+ "edu",NA,"edu","biz","biz")

credit <- credit[,c("Default","duration","amount","installment","age",
+ "history", "purpose","foreign","rent")]
credit[1:3,]

Default duration amount installment age history purpose foreign rent
1 0 6 1169 4 67 terrible goods/repair foreign FALSE
2 1 48 5951 2 22 poor goods/repair foreign FALSE
3 0 12 2096 2 49 terrible edu foreign FALSE

summary(credit) # check out the data

Default duration amount installment age
0:700 Min. : 4.0 Min. : 250 Min. :1.000 Min. :19.00
1:300 1st Qu.:12.0 1st Qu.: 1366 1st Qu.:2.000 1st Qu.:27.00

Median :18.0 Median : 2320 Median :3.000 Median :33.00
Mean :20.9 Mean : 3271 Mean :2.973 Mean :35.55
3rd Qu.:24.0 3rd Qu.: 3972 3rd Qu.:4.000 3rd Qu.:42.00
Max. :72.0 Max. :18424 Max. :4.000 Max. :75.00

history purpose foreign rent
good : 89 newcar :234 foreign:963 FALSE:821
poor :618 usedcar :103 german : 37 TRUE :179
terrible:293 goods/repair:495

edu : 59
biz :109

## for illustration we consider just 3 loan characteristics:
## amount,duration,installment
## Standardization of the data is preferable, especially if
## units of the features are quite different
## We use the normalize function in the R-package textir;
## it converts data frame columns to mean-zero sd-one
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x <- normalize(credit[,c(2,3,4)])
x[1:3,]

duration amount installment
[1,] -1.2358595 -0.7447588 0.9180178
[2,] 2.2470700 0.9493418 -0.8697481
[3,] -0.7382981 -0.4163541 -0.8697481

## training and prediction datasets
## training set of 900 borrowers; want to classify 100 new ones
set.seed(1)
train <- sample(1:1000,900) ## this is training set of 900 borrowers
xtrain <- x[train,]
xnew <- x[-train,]
ytrain <- credit$Default[train]
ynew <- credit$Default[-train]

## k-nearest neighbor method
library(class)
nearest1 <- knn(train=xtrain, test=xnew, cl=ytrain, k=1)
nearest3 <- knn(train=xtrain, test=xnew, cl=ytrain, k=3)
data.frame(ynew,nearest1,nearest3)[1:10,]

ynew nearest1 nearest3
1 1 1 0
2 0 1 1
3 1 1 1
4 0 0 0
5 0 1 1
6 0 0 0
7 0 0 0
8 0 0 0
9 0 1 1
10 0 0 1

## calculate the proportion of correct classifications
pcorrn1=100*sum(ynew==nearest1)/100
pcorrn3=100*sum(ynew==nearest3)/100
pcorrn1

[1] 60

pcorrn3

[1] 61

## plot for 3nn
plot(xtrain[,c("amount","duration")],

+ col=c(4,3,6,2)[credit[train,"installment"]],
+ pch=c(1,2)[as.numeric(ytrain)],
+ main="Predicted default, by 3 nearest neighbors",cex.main=.95)
points(xnew[,c("amount","duration")],

+ bg=c(4,3,6,2)[credit[train,"installment"]],
+ pch=c(21,24)[as.numeric(nearest3)],cex=1.2,col=grey(.7))
legend("bottomright",pch=c(1,16,2,17),bg=c(1,1,1,1),

+ legend=c("data 0","pred 0","data 1","pred 1"),
+ title="default",bty="n",cex=.8)
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legend("topleft",fill=c(4,3,6,2),legend=c(1,2,3,4),
+ title="installment %", horiz=TRUE,bty="n",col=grey(.7),cex=.8)
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## above was for just one training set
## cross-validation (leave one out)
pcorr=dim(10)
for (k in 1:10) {
pred=knn.cv(x,cl=credit$Default,k)
pcorr[k]=100*sum(credit$Default==pred)/1000

}
pcorr

[1] 61.0 61.1 64.2 62.6 64.4 65.9 65.6 67.6 66.0 67.0

REFERENCE

Asuncion, A. and Newman, D.J.: UCI Machine Learning Repository. Irvine, CA: Univer-
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CHAPTER 10

The Naı̈ve Bayesian Analysis:
a Model for Predicting a Categorical
Response from Mostly Categorical
Predictor Variables

The objective here is to infer (predict) an unknown binary response of a case from
the information that is provided by its predictor or feature variables, which, in
this application, are assumed categorical. One could search over the training set
to find cases that match exactly the values of the predictor variables of the case
in question, and then use the most frequent response of the matched cases for
deciding whether the prediction for y should be 0 or 1. A common problem with
this approach is that for categorical predictor variables (even when working with
very large training sets), the data are sparse in the sense that there will be few cases
(or even no cases) that match the values on the predictor variables of the case in
question. The Bayesian approach can help.

We may not have data to make inferences about the conditional probability on
the left-hand side of the equation shown below. But we can always write this
probability as

P
(
y = 1|x1, x2, . . . , xk

)

= P
(
x1, x2, . . . , xk |y = 1

)
P(y = 1)

P
(
x1, x2, . . . , xk |y = 1

)
P (y = 1) + P(x1, x2, . . . , xk |y = 0)P (y = 0)

.

This result is exact, and follows from basic conditional probability rules. It is often
referred to as the (general) Bayesian solution. But also this solution is difficult
to implement, because with a fine categorization of predictor variables it will be
difficult to estimate the conditional joint probabilities P(x1, x2, . . . , xk |y = 1) and
P(x1, x2, . . . , xk |y = 0) that are needed for its calculation. The prior probabilities,
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P(y = 1) and P(y = 0), on the other hand, are easy to estimate; one can use the
relative frequencies from the training set.

The naı̈ve Bayesian approach assumes that, conditional on the response, the
predictors are independent. Under this assumption, we can write

P(y = 1|x1, x2, . . . , xk )

=

[
k∏

i=1

P
(
xi |y = 1

)]
P(y = 1)

[
k∏

i=1

P
(
xi |y = 1

)]
P(y = 1) +

[
k∏

i=1

P
(
xi |y = 0

)]
P(y = 0)

.

This can be implemented as usually there is enough information in the training
set to estimate the marginal probabilities P(xi |y = 1) and P(xi |y = 0), for i =
1, 2, . . . , k .

10.1 EXAMPLE: DELAYED AIRPLANES

The data, taken from Shmueli et al. (2010), have been considered earlier in
Chapter 7 on logistic regression. The data set consists of 2201 airplane flights
in January 2004 from the Washington, DC area into NYC. The characteristic of
interest (the response) is whether or not a flight has been delayed by more than
15 minutes (0 = no delay/1 = delay).

The explanatory variables include:

three different arrival airports (Kennedy, Newark, and LaGuardia; in that order),

three different departure airports (Reagan, Dulles, and Baltimore; in that order),

eight carriers,

a categorical variable for 16 different hours of departure (6 am to 10 pm),

weather conditions (0/1),

day of week: 7 days with Monday = 1, . . . , Sunday = 7.

In Section 7.7 (logistic regression), we selected 1320 cases (60%) as the
training set. The success probability, with a delayed flight defined as “success”
(y = 1), was 0.198 in the training set. The remaining 881 cases became the
evaluation (test) data set.

The naı̈ve rule that does not incorporate any covariate information and classifies
every flight as being on time led to an overall error of 18.9% in the holdout data
set. With this rule, we never make an error predicting a flight that is on time, but
we make a 100% error predicting a flight that is delayed.
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The logistic regression model in Section 7.7 with probability cutoff 0.5 was able
to reduce (somewhat) the overall error in the holdout set to 17.6%. Among the 167
delayed flights, logistic regression identified correctly 14 delayed flights (8.4%),
but it missed 153/167 delayed flights (92.6%). Furthermore, the logistic regression
model classified 2 of the 714 on-time flights as being delayed. These improvements
may appear minor, but the lift chart (which was also programmed) provided a
quick and reliable method of identifying those flights that are most likely to be
delayed.

We now use this data set, the 2201 flights from the Washington, DC area into
NYC, to illustrate the naı̈ve Bayesian method. The predictor variables are carrier
(8 possibilities), day of week (7 possibilities; note this is different from logistic
regression where we considered just two categories, Sunday/Monday vs remaining
days), departure airport (3 possibilities), arrival airport (3 possibilities), weather
(binary), and time of departure (16 one-hour time slots). These categorical predictor
variables create (8)(7)(3)(3)(2)(16) = 16,128 groups, which is a very large number
and even larger than the number of cases in the training data set (1320). Most of
these groups contain no data.

The naı̈ve Bayesian approach helps as it looks at each predictor variable sep-
arately. Estimates of the prior probabilities and of the conditional probabilities
P(xi |y = 1) and P(xi |y = 0) are needed for the implementation of the naı̈ve
Bayesian approach. The probabilities are estimated from the training set consisting
of the 60% randomly selected flights, and they are shown below. The remaining
40% of the 2201 flights serve as the holdout period.

Prior probabilities

P(y = 0) P(y = 1)

0.802 0.198

Probabilities for scheduled time

For y = 0
1 2 3 4 5 6 7 8 9 10

0.061 0.068 0.072 0.059 0.050 0.034 0.064 0.077 0.095 0.063
11 12 13 14 15 16
0.077 0.102 0.042 0.046 0.022 0.065

For y = 1
1 2 3 4 5 6 7 8 9 10
0.038 0.046 0.065 0.027 0.027 0.008 0.065 0.050 0.153 0.092
11 12 13 14 15 16
0.077 0.146 0.027 0.065 0.015 0.100
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Probabilities for scheduled carrier

For y = 0
1 2 3 4 5 6 7 8
0.041 0.228 0.185 0.122 0.015 0.180 0.015 0.214

For y = 1
1 2 3 4 5 6 7 8
0.069 0.337 0.092 0.176 0.011 0.222 0.015 0.077

Probabilities for scheduled destination

For y = 0
1 2 3
0.286 0.169 0.545

For y = 1
1 2 3
0.387 0.211 0.402

Probabilities for scheduled origin

For y = 0
1 2 3
0.064 0.653 0.283

For y = 1
1 2 3
0.096 0.490 0.414

Probabilities for weather

For y = 0
0 1
1 0

For y = 1
0 1
0.920 0.080

Probabilities for scheduled day of week

For y = 0
1 2 3 4 5 6 7
0.127 0.137 0.154 0.178 0.176 0.128 0.099
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For y = 1
1 2 3 4 5 6 7
0.207 0.153 0.126 0.142 0.146 0.054 0.172

With these estimates, we can determine probabilities such as

P(y = 1|Carrier = 7, DOW = 7, DepTime = 9 AM − 10 AM, Dest = LGA,
Origin = DCA, Weather = 0)

= [(0.015)(0.172)(0.027)(0.402)(0.490)(0.920)](0.198)

[(0.015)(0.172)(0.027)(0.402)(0.490)(0.920)](0.198)

+[(0.015)(0.099)(0.059)(0.545)(0.653)(1)](0.802)

= 0.09.

Recall that in our coding, DepTime 9 AM − 10 AM = 4, LaGuardia = 3, and
DCA = 2.

How well does this method fare? We apply this method to the cases of
the holdout period. We score a case as success (delayed flight; y = 1) if its
probability is 0.5 or larger, and as failure (on-time flight; y = 0), otherwise. From
these data, we obtain a 2 × 2 table of classifications, and from that table we
calculate the proportions of incorrect classifications (misclassifications). We are
not doing better than with logistic regression. The misclassification proportion
of the naı̈ve Bayesian approach is 19.52%. We predict 30 delayed flights (out
of 167) correctly, but fail to identify 137/(137 + 30), or 73%, of delayed
flights. Furthermore, 35/(35 + 679), or 4.9%, of on-time flights are predicted as
delayed.

## coding as 1 if probability 0.5 or larger

gg1=floor(gg+0.5)

ttt=table(response[-train],gg1)

ttt

gg1
0 1

0 679 35
1 137 30

error=(ttt[1,2]+ttt[2,1])/n2

error

[1] 0.1952327

The R program that we used to carry out the calculations can be found on the
webpage that accompanies this book.
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CHAPTER 11

Multinomial Logistic Regression

In this chapter we extend the logit link function of logistic regression in Chapter 7
to the multinomial situation where a categorical response variable can take on one
of several (more than two) outcomes. We discuss an approach of estimating the
class probabilities for a multicategory response, and we use these probabilities to
classify new cases into one of several outcome groups.

Assume that we have g possible (unordered) outcomes {1, 2, . . . , g}, with
multinomial probabilities P [y = k ] = pk , k = 1, 2, . . . , g . Similar to the logit-type
expressions in the binary case, the probabilities are parameterized as

p1 = P [y = 1] = 1

1 +
g∑

h=2

exp(αh + xβh)

and

pk = P [y = k ] = exp(αk + xβk )

1 +
g∑

h=2

exp(αh + xβh)

, for k = 2, . . . , g .

The probabilities sum to 1. Here we have adopted group 1 as the standard category,
but any other group could be used instead.

The log-odds interpretation of the logistic regression model still applies, as

log

(
pk

p1

)
= αk + xβk , for k = 2, . . . , g .

Maximum likelihood estimates of the parameters and their standard errors are
obtained by extending the analysis of the logistic regression model. The likelihood
is the product of multinomial probabilities, with the g probabilities parameterized
in the previous equations. The extensions involved are fairly straightforward math-
ematically. Usually an iterative reweighted least squares algorithm is used to carry
out the estimation. For g = 2, we are back to the logistic regression model.
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However, there are several drawbacks to these models:

1. The models involve many parameters, which makes their interpretation
tedious. Changing the explanatory variable x by one unit (from value x
to x + 1) changes the odds of getting an outcome from group k relative
to getting an outcome from group 1 (i.e., the ratio of the two group
probabilities) by the factor exp(βk ). For βk = 1.46, for example, a unit
change in x increases the odds by the multiplicative factor exp(1.46) = 4.3.
For βk = 0 and exp(0) = 1, the change in x does not affect the ratio of
these two probabilities. Similarly, a one-unit change in x changes the odds
of getting an outcome from group k relative to getting an outcome from
group r (i.e., now different from group 1) by the factor exp(βk − βr ). Many
such group comparisons need to be carried out if one wants to interpret the
estimates, and even for a single covariate (as we have assumed here) the
interpretation is not that easy.

Fortunately, the main interest in data mining is not so much the
interpretation of the parameter estimates, but the estimation of the class prob-
abilities p1 = P [y = 1] = 1/[1 + ∑g

h=2 exp(αh + xβh)] and pk = P [y =
k ] = [exp(αk + xβk )]/[1 + ∑g

h=2 exp(αh + xβh)] (for k = 2, . . . , g), and
the classification of a new case with given covariate (feature) vector x .
This is easily accomplished by substituting the parameter estimates into
the probability equations. For visualization, one can graph the resulting
probabilities, overlaid for each of the g categories, against the values of the
covariate x .

Note that here we consider just a single covariate. The extension to several
covariates is again straightforward mathematically, but increases considerably
the number of parameters (instead of a single parameter βk , we now have a
coefficient for each covariate and a vector of parameters), which makes the
interpretation and the graphing of probabilities even more challenging.

2. Maximum-likelihood estimation (MLE) of logistic and multinomial logistic
models encounters numerical problems if the data is separable and if the
predicted probabilities are close to either 0 or 1. Imagine a scatter plot of two
predictor variables coming from two groups where a line through the data can
separate the two groups exactly. For example, assume that the observations of
one group lie in the upper-right corner, while the observations of the second
group are in the lower left corner, and that there is no overlap. Many different
lines through the data achieve a perfect separation, and this explains why in
such situations MLE of the coefficients in the logistic regression model will
run into numerical difficulties. It will be impossible to come up with unique
parameter estimates, although the classification will not be affected by such
multicollinearity.

Estimation difficulties also arise if the model includes too many parame-
ters that need to be estimated, and this happens quite often as multinomial
logistic regression models for responses with several outcomes have lots of
parameters. An extreme case of this situation occurs in the analysis of text
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data (Chapter 19). But even in the absence of numerical estimation problems,
it is not advisable to use that many estimated coefficients for the prediction of
the probabilities and the subsequent classification of new cases. One needs
to avoid model overfitting. We discussed earlier that overfitted models do
not work well for predicting the outcomes of new cases. Shrinkage methods
such as the LASSO (discussed in Chapter 6) add to the estimation criterion a
regularization component that involves the L1 norm of the parameter vector.
Bayesian estimation methods achieve similar shrinkage by putting Laplace
priors on the coefficients. Such methods should be considered when estimat-
ing multinomial logistic regression models with many parameters, as they
shrink the estimates and “zero out” many of the unneeded variables.

11.1 COMPUTER SOFTWARE

Several choices are available to estimate multinomial logistic regression models
in R. For example, one can use the command mlogit in the package mlogit, the
command vglm in the package VGAM, or the mnlm function in the package textir.
These packages differ somewhat with respect to the data input, the model param-
eterization they adopt, and the estimation approach they use. For example, mlogit
and vglm follow the parameterization outlined in this section that sets one group as
the standard, and both packages obtain maximum likelihood estimates. The func-
tion mnlm in textir adopts a slightly different parameterization and implements a
Bayesian estimation approach with a penalty function that regularizes the parameter
estimates. The penalty is introduced via a prior distribution on the coefficients. For
a detailed discussion of the estimation method, see Taddy (2012). The penalty esti-
mation approach in mnlm allows for shrinkage, similar to the shrinkage of LASSO
estimates that has been discussed in Chapter 6. This approach is especially useful
for models with many parameters. It avoids many of the numerical problems that
arise with MLE, and more importantly, it avoids overfitting.

11.2 EXAMPLE 1: FORENSIC GLASS

We have used the forensic glass data set containing 214 cases, six categories (WinF,
WinNF, Veh, Con, Tabl, and Head) and nine predictor (explanatory, covariate,
feature) variables in an earlier chapter (Chapter 9) on the classification with the
nearest neighbor method. The box plots in Chapter 9 showed how each of the
nine features varies across the six glass types. A feature that differs little across
the six glass types is unlikely to help in classifying shards. On the other hand,
features that differ across the six glass types such as the proportions of Na, Mg,
and Al can be expected to aid in classification. In the following discussion, we
use the three features, proportions of Na, Mg, and Al, to illustrate the multinomial
logistic regression model. A multinomial logistic regression model with just three
features makes the interpretation of the results somewhat easier, and it also avoids
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the numerical estimation difficulties that we encounter when fitting the model with
all nine features. We use the vglm function from the R package VGAM to estimate
the model. We standardize all feature variables to have zero means and standard
deviations one; standardization helps with the estimation, especially if the features
are of very different scales. The multinomial logistic regression model with all nine
features will be estimated with nmlm of the R library textir. This will have the
advantage of shrinking some of the many estimates toward zero.

## Forensic Glass
## you need to install the packages first
library(VGAM) ## VGAM to estimate multinomial logistic regression
library(textir) ## to standardize the features
library(MASS) ## a library of example datasets
data(fgl) ## loads the data into R; see help(fgl)
fgl

RI Na Mg Al Si K Ca Ba Fe type
1 3.01 13.64 4.49 1.10 71.78 0.06 8.75 0.00 0.00 WinF
2 -0.39 13.89 3.60 1.36 72.73 0.48 7.83 0.00 0.00 WinF
3 -1.82 13.53 3.55 1.54 72.99 0.39 7.78 0.00 0.00 WinF
4 -0.34 13.21 3.69 1.29 72.61 0.57 8.22 0.00 0.00 WinF
. . .
211 -1.15 14.92 0.00 1.99 73.06 0.00 8.40 1.59 0.00 Head
212 2.65 14.36 0.00 2.02 73.42 0.00 8.44 1.64 0.00 Head
213 -1.49 14.38 0.00 1.94 73.61 0.00 8.48 1.57 0.00 Head
214 -0.89 14.23 0.00 2.08 73.36 0.00 8.62 1.67 0.00 Head

## standardization, using the normalize function in the library
## textir
covars <- normalize(fgl[,1:9],s=sdev(fgl[,1:9]))
sd(covars) ## convince yourself that features are standardized
dd=data.frame(cbind(type=fgl$type,covars))
gg <- vglm(type ~ Na+Mg+Al,multinomial,data=dd)
summary(gg)

The R function vglm considers the last group (not the first) as the standard. The
estimates of five intercepts (α1, . . . , α5) and of five vectors of regression coef-
ficients (β1, . . . , β5) are shown below; each coefficient vector contains three ele-
ments, as there are three covariates in the model. The model contains 20 parameters,
which are estimated on 214 cases.

Call:
vglm(formula = type ~ Na + Mg + Al, family = multinomial, data = dd)

Pearson Residuals:
Min 1Q Median 3Q Max

log(mu[,1]/mu[,6]) -8.9405 -0.40405 -0.007747 0.556957 1.7873
log(mu[,2]/mu[,6]) -8.9436 -0.48007 -0.148789 0.677820 4.0956
log(mu[,3]/mu[,6]) -8.3415 -0.25511 -0.177947 -0.009132 4.2084
log(mu[,4]/mu[,6]) -7.6165 -0.10943 -0.037835 -0.017610 1.6631
log(mu[,5]/mu[,6]) -6.7660 -0.11338 -0.041860 -0.019653 4.0316
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Coefficients:
Estimate Std. Error z value

(Intercept):1 1.613703 0.84001 1.921057
(Intercept):2 3.444128 0.72131 4.774792
(Intercept):3 0.999448 0.93007 1.074594
(Intercept):4 0.067163 0.95554 0.070288
(Intercept):5 0.339579 0.89779 0.378239
Na:1 -2.483557 0.65323 -3.801955
Na:2 -2.031676 0.55399 -3.667326
Na:3 -1.409505 0.72721 -1.938243
Na:4 -2.382624 0.59434 -4.008837
Na:5 0.151459 0.53353 0.283879
Mg:1 3.842907 0.76674 5.012003
Mg:2 1.697162 0.47748 3.554387
Mg:3 3.291350 1.02370 3.215158
Mg:4 0.051466 0.50284 0.102351
Mg:5 0.699274 0.50346 1.388924
Al:1 -3.719793 0.68049 -5.466312
Al:2 -1.704689 0.54805 -3.110489
Al:3 -3.006102 0.75556 -3.978654
Al:4 0.263510 0.40013 0.658562
Al:5 -1.394559 0.51315 -2.717660

Number of linear predictors: 5

Names of linear predictors:

log(mu[,1]/mu[,6]),log(mu[,2]/mu[,6]),log(mu[,3]/mu[,6]),log(mu[,4]/mu[,6]),
log(mu[,5]/mu[,6])

Dispersion Parameter for multinomial family: 1

Residual deviance: 379.6956 on 1050 degrees of freedom

Log-likelihood: -189.8478 on 1050 degrees of freedom

Number of iterations: 7

predict(gg) ## obtain log-odds relative to last group

The predict command returns, for each case i with features xi , the fitted logits
α̂k + x ′

i β̂k . For each of the 214 cases we obtain five logits (k = 1, . . . , 5) as there
are six groups, with the last group being used as the standard.

log(mu[,1]/mu[,6]) log(mu[,2]/mu[,6]) log(mu[,3]/mu[,6])
1 8.2875576 6.16853078 6.7952221
2 3.2189387 3.61161665 2.7674061
3 2.8395198 3.83386485 2.1909148
4 6.0483537 5.64832947 4.5679615

. . .
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log(mu[,4]/mu[,6]) log(mu[,5]/mu[,6])
1 -7.278033e-01 2.221312538
2 -1.351765e+00 1.109980963
3 -2.081657e-01 0.516194638
4 5.985536e-01 1.223013881
. . .

round(fitted(gg),2) ## probabilities

We use the estimates of the coefficients to obtain, for each case i with features
xi , the fitted probability for each of the six possible outcomes (groups). These are
obtained by executing the fitted command. The predicted probabilities for the first
couple of cases, together with the actual classification, are shown as follows:

1 2 3 4 5 6
1 0.74 0.09 0.17 0.00 0.00 0.00
2 0.30 0.45 0.19 0.00 0.04 0.01
3 0.23 0.61 0.12 0.01 0.02 0.01
4 0.52 0.35 0.12 0.00 0.00 0.00
. . .

cbind(round(fitted(gg),2),fgl$type)

1 2 3 4 5 6
1 0.74 0.09 0.17 0.00 0.00 0.00 1
2 0.30 0.45 0.19 0.00 0.04 0.01 1
3 0.23 0.61 0.12 0.01 0.02 0.01 1
4 0.52 0.35 0.12 0.00 0.00 0.00 1
. . .

## boxplots of estimated probabilities against true group

dWinF=fgl$type=="WinF"

dWinNF=fgl$type=="WinNF"

dVeh=fgl$type=="Veh"

dCon=fgl$type=="Con"

dTable=fgl$type=="Tabl"

dHead=fgl$type=="Head"

yy1=c(fitted(gg)[dWinF,1],fitted(gg)[dWinNF,2],

+ fitted(gg)[dVeh,3],fitted(gg)[dCon,4],fitted(gg)[dTable,5],

+ fitted(gg)[dHead,6])

xx1=c(fgl$type[dWinF],fgl$type[dWinNF],fgl$type[dVeh],

+ fgl$type[dCon],fgl$type[dTable],fgl$type[dHead])

boxplot(yy1~xx1,ylim=c(0,1),xlab="1=WinF,2=WinNF,3=Veh,

+ 4=Con,5=Table,6=Head")

Below, we plot the probabilities of group membership against group. For each
group, we construct a box plot of its estimated probabilities, using the estimated
probabilities of those shards that were known to come from that group. A good
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model should give us large probabilities in each of the six groups. The results show
that we are doing poorly in identifying Vehicle and Table glass, but much better in
identifying Head glass; most probabilities for WinF, WinNF, and Table glass are
in the 40–60% range.

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1=WinF,2=WinNF,3=Veh,4=Con,5=Table,6=Head

So far, the coefficients were estimated from the complete set of 214 shards. Next,
we evaluate the performance of the multinomial logistic model in terms of its out-
of-sample prediction. We select a training set of 194 cases at random, estimate the
model on these 194 cases, and use the model to predict the probabilities of group
membership for the 20 cases that have been withheld from the estimation. The
predicted group membership probabilities are given below. Using the majority rule
(which classifies an item into the group with the highest probability), we find five
incorrect classifications (5/20, or 25%); they are labeled in bold-face type.

## performance in predicting a single set of 20 new cases
library(VGAM)
library(textir)
library(MASS) ## a library of example datasets
data(fgl) ## loads the data into R; see help(fgl)
fgl
covars <- normalize(fgl[,1:9],s=sdev(fgl[,1:9]))
dd=data.frame(cbind(type=fgl$type,covars))
n=length(fgl$type)
nt=n-20
set.seed(1)
train <- sample(1:n,nt)
## predict
gg <- vglm(type ~ Na+Mg+Al,multinomial,data=dd[train,])
p1=predict(gg,newdata=dd[-train,])
p1=exp(p1)
## we calculate the probabilities from the predicted logits
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sum=(1+p1[,1]+p1[,2]+p1[,3]+p1[,4]+p1[,5])
probWinF=round(p1[,1]/sum,2) ## WinF
probWinNF=round(p1[,2]/sum,2) ## WinNF
probVeh=round(p1[,3]/sum,2) ## Veh
probCon=round(p1[,4]/sum,2) ## Con
probTable=round(p1[,5]/sum,2) ## Table
probHead=round(1/sum,2) ## Head
ppp=data.frame(probWinF,probWinNF,probVeh,probCon,probTable,probHead,

+ fgl$type[-train])
ppp

probWinF probWinNF probVeh probCon probTable probHead fgl.type..train.
1 0.73 0.08 0.19 0.00 0.00 0.00 WinF
23 0.58 0.32 0.09 0.00 0.00 0.00 WinF
26 0.59 0.30 0.11 0.00 0.00 0.00 WinF
33 0.58 0.32 0.09 0.00 0.00 0.00 WinF
46 0.35 0.47 0.15 0.01 0.02 0.01 WinF
55 0.25 0.63 0.09 0.01 0.02 0.01 WinF
58 0.52 0.38 0.09 0.00 0.00 0.00 WinF
65 0.74 0.11 0.15 0.00 0.00 0.00 WinF
77 0.25 0.59 0.13 0.01 0.02 0.01 WinNF
81 0.03 0.70 0.02 0.21 0.01 0.03 WinNF
84 0.27 0.61 0.09 0.02 0.01 0.01 WinNF
96 0.29 0.55 0.12 0.01 0.02 0.01 WinNF
103 0.73 0.21 0.06 0.00 0.00 0.00 WinNF
123 0.31 0.55 0.11 0.01 0.01 0.01 WinNF
136 0.58 0.28 0.14 0.00 0.00 0.00 WinNF
146 0.63 0.27 0.10 0.00 0.00 0.00 WinNF
169 0.00 0.16 0.00 0.66 0.01 0.16 Con
172 0.00 0.00 0.00 0.82 0.00 0.18 Con
183 0.00 0.02 0.00 0.12 0.03 0.83 Tabl
199 0.00 0.00 0.00 0.10 0.00 0.90 Head

The proportion of incorrect classifications (here 5 of 20, or 25%) depends on
the selected test data set. In order to obtain more stable estimates, we replicate the
analysis for 100 randomly selected test data sets. On average, about 60% of glass
shards are identified correctly; about 40% are misclassified.

## performance from 100 replications predicting 20 new cases
library(VGAM)
library(textir)
library(MASS) ## a library of example datasets
data(fgl) ## loads the data into R; see help(fgl)
fgl
covars <- normalize(fgl[,1:9],s=sdev(fgl[,1:9]))
dd=data.frame(cbind(type=fgl$type,covars))
## out-of-sample prediction
set.seed(1)
out=dim(20)
proportion=dim(100)
prob=matrix(nrow=20,ncol=6)
n=length(fgl$type)
nt=n-20
for (kkk in 1:100) {
train <- sample(1:n,nt)
## predict
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gg <- vglm(type ~ Na+Mg+Al,multinomial,data=dd[train,])
p1=predict(gg,newdata=dd[-train,])
p1=exp(p1)
## we calculate the probabilities from the predicted logits
sum=(1+p1[,1]+p1[,2]+p1[,3]+p1[,4]+p1[,5])
prob[,1]=p1[,1]/sum ## WinF
prob[,2]=p1[,2]/sum ## WinNF
prob[,3]=p1[,3]/sum ## Veh
prob[,4]=p1[,4]/sum ## Con
prob[,5]=p1[,5]/sum ## Table
prob[,6]=1/sum ## Head
for (k in 1:20) {
pp=prob[k,]
out[k]=max(pp)==pp[fgl$type[-train]][k]
}
proportion[kkk]=sum(out)/20
}
## proportion of correct classification
proportion

[1] 0.70 0.75 0.60 0.65 0.65 0.80 0.70 0.75 0.55 0.55
[11] 0.75 0.65 0.50 0.55 0.55 0.60 0.60 0.75 0.60 0.65
[21] 0.65 0.50 0.55 0.60 0.45 0.45 0.60 0.55 0.60 0.65
[31] 0.60 0.50 0.55 0.70 0.40 0.45 0.60 0.50 0.60 0.60
[41] 0.75 0.60 0.60 0.75 0.50 0.50 0.60 0.65 0.70 0.80
[51] 0.40 0.60 0.40 0.60 0.40 0.65 0.50 0.50 0.70 0.60
[61] 0.50 0.65 0.65 0.45 0.85 0.50 0.45 0.65 0.40 0.60
[71] 0.60 0.55 0.60 0.45 0.70 0.40 0.70 0.55 0.75 0.45
[81] 0.60 0.45 0.65 0.70 0.50 0.80 0.50 0.40 0.55 0.65
[91] 0.60 0.45 0.50 0.80 0.65 0.75 0.75 0.70 0.70 0.70

mean(proportion)

[1] 0.5965

boxplot(ylim=c(0,1),ylab="percent correct classification",proportion)
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11.3 EXAMPLE 2: FORENSIC GLASS REVISITED

Until now the analysis considered only three features. Next, we consider the full
data set, with all six classes and 214 cases. The number of parameters in the
multinomial logistic regression model is quite large (with six groups and one group
as the standard, there are 5 intercepts and (5)(9) = 45 slopes, for a total number of
50 parameters), considering that there are only 214 cases. It is not surprising that
an MLE approach runs into difficulties. And this is exactly what we find when we
estimate the model using vglm. The estimates of the parameters are unusually large
and with both positive and negative signs, their standard errors are huge, and their
t-ratios are close to zero, all diagnostics that point to serious multicollinearity and an
overspecified model. The parameter estimates are meaningless, and the calculation
of the multinomial logistic group probabilities with such large estimates is likely
to lead to numerical problems.

Simplification of the model and shrinkage of the estimates would certainly be
beneficial, which brings us to the Bayesian penalty estimation approach that is
carried out by mnlm in the R library textir. For a description of this program and
its current defaults, type help(mnlm) into your R session window. One penalty
approach in mnlm puts a Laplace prior distribution on each nonintercept regression
coefficient β and obtains the posterior modes of the multinomial logistic regression
parameters. A large scale parameter λ ≥ 0 in the Laplace prior density, p(β) =
(λ/2) exp(−λ|β|), implies considerable shrinkage. A small scale parameter (or very
small penalty) specifies a flat prior and induces little or no shrinkage. The scale
parameter can be specified using the argument penalty = lambda in the mnlm
calling statement, and the appropriate value of λ ≥ 0 and the optimal amount of
shrinkage can be determined by cross-validation. Since the same scale parameter
is applied to all coefficients, it is recommended to first standardize the covariates,
especially if the covariates are of very different magnitudes.

A second shrinkage approach in mnlm allows the scale parameters of the Laplace
prior to vary across all nonintercept regression coefficients. It specifies a hyper prior
distribution for the scale parameters, adopting a Gamma hyper prior distribution
with shape parameter s and rate parameter r . The current default specification
for the Laplace scale parameter (penalty = c(1,1)) specifies s = 1 and r =
1, a gamma distribution with mean 1 and standard deviation 1. The density of
this distribution resembles an exponential decay; while giving considerable prior
probability to small Laplace scales (which imply little shrinkage), the prior also
allows for large Laplace scale parameters (which imply considerable shrinkage).
If you want even more shrinkage, specify a smaller value of r such as r = 0.2
(penalty = c(1,0.2)), which results in a gamma prior with mean 5 and standard
deviation 5. This prior density allows for even larger Laplace scale parameters and
considerable shrinkage.

Below, we use the function mnlm of the textir R library to estimate the coeffi-
cients of the multinomial logistic regression model. We standardize the covariates,
and we perform a cross-validation to determine the appropriate scale parameter
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λ ≥ 0 of the Laplace prior distribution and the appropriate shrinkage of the non-
intercept regression coefficients in the multinomial logistic regression model. The
results show that the proportion of correct classification varies very little with the
scale (penalty) parameter λ ≥ 0, and that the correct out-of-sample classification
will not be better than about 65%. For extremely large shrinkage (when all regres-
sion parameters are shrunk to zero), a new observation is classified into the WinNF
group as this is the most frequent group (76 out of 214 pieces are from this group),
for a correct classification of 100(76/214) = 35.5%.

library(textir)

set.seed(1)

library(MASS) ## a library of example datasets

data(fgl) ## loads the data into R; see help(fgl)

covars <- normalize(fgl[,1:9],s=sdev(fgl[,1:9]))

n=length(fgl$type)

prop=dim(30)

pen=dim(30)

out=dim(n)

for (j in 1:30) {

pen[j]=0.1*j

for (k in 1:n) {

train1=c(1:n)

train=train1[train1!=k]

glasslm <- mnlm(counts=fgl$type[train],penalty=pen[j],

+ covars=covars[train,])

prob=predict(glasslm,covars[-train,])

prob=round(prob,3)

out[k]=max(prob)==prob[fgl$type[-train]]

}

prop[j]=sum(out)/n

}

## proportion of correct classifications using Laplace scale

## penalty

output=cbind(pen,prop)

round(output,3)

pen prop
[1,] 0.1 0.626
[2,] 0.2 0.631
[3,] 0.3 0.631
[4,] 0.4 0.640
[5,] 0.5 0.645
[6,] 0.6 0.640
[7,] 0.7 0.640
[8,] 0.8 0.654
[9,] 0.9 0.640
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[10,] 1.0 0.645
[11,] 1.1 0.650
[12,] 1.2 0.645
[13,] 1.3 0.645
[14,] 1.4 0.640
[15,] 1.5 0.636
[16,] 1.6 0.640
[17,] 1.7 0.640
[18,] 1.8 0.640
[19,] 1.9 0.640
[20,] 2.0 0.645
[21,] 2.1 0.645
[22,] 2.2 0.640
[23,] 2.3 0.636
[24,] 2.4 0.636
[25,] 2.5 0.631
[26,] 2.6 0.631
[27,] 2.7 0.631
[28,] 2.8 0.631
[29,] 2.9 0.631
[30,] 3.0 0.631
. . .
[1000,] 100 0.355

The annotated output of the analysis with Laplace prior λ = 1.0 is shown below:

library(textir)

library(MASS) ## a library of example datasets

data(fgl) ## loads the data into R; see help(fgl)

fgl$type

covars <- normalize(fgl[,1:9],s=sdev(fgl[,1:9]))

glasslm <- mnlm(counts=fgl$type,penalty=1.0,covars=covars)

glasslm$intercept

category intercept
WinF 0.5787068
WinNF 2.0459126
Veh -0.1046593
Con -0.7854798
Tabl -1.1089260
Head -0.4823157

glasslm$loadings

round(as.matrix(glasslm$loadings)[,],2)
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covariate
category RI Na Mg Al Si K Ca Ba Fe

WinF 0.00 0.0 1.90 -2.04 0.00 0.00 0.00 0.00 0.00
WinNF 0.00 0.0 0.01 -0.23 -0.50 0.00 -0.13 0.00 0.29
Veh -1.79 0.0 0.08 -2.12 -1.80 -0.64 0.00 0.00 0.00
Con 0.00 0.0 -0.88 1.54 0.00 0.28 0.34 0.00 0.00
Tabl 0.00 1.9 -0.06 0.13 0.33 -2.16 0.00 -0.32 -0.40
Head 0.69 1.6 -1.03 0.96 0.87 0.27 -0.55 1.02 -0.10

Observe that quite a few of the estimated coefficients are zero and many of the
variables are not entering the logit equations.

fitted(glasslm)

as.matrix(fitted(glasslm)[1,])

response
WinF WinNF Veh Con Tabl Head

[1,] 0.7470912 0 0 0 0 0

This command calculates the fitted count expectations. For a binomial or multi-
nomial response, they are stored in a simple triplet matrix (simple triplet matrices
are explained in Appendix 11.A) with empty entries for zero count observations.
For example, consider the first row with response 1 in the first column (WinF).
The estimated probability for WinF is shown in the first column of the fitted count
expectations, with zeros in the other columns as they have zero observed counts.

round(predict(glasslm,covars),2)

probability
WinF WinNF Veh Con Tabl Head

1 0.75 0.13 0.10 0.00 0.02 0.00
2 0.42 0.36 0.09 0.01 0.07 0.04
3 0.31 0.46 0.09 0.02 0.08 0.04
4 0.53 0.33 0.12 0.01 0.01 0.01
. . .

211 0.00 0.00 0.00 0.00 0.01 0.99
212 0.00 0.00 0.00 0.00 0.00 1.00
213 0.00 0.00 0.00 0.00 0.01 0.99
214 0.00 0.00 0.00 0.00 0.00 0.99

plot(glasslm)
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Here we plot the probabilities of group membership against group. The results
show that we are still doing poorly in identifying Vehicle glass, but somewhat
better in identifying Head glass. The results are only a modest improvement over
those of the model with just Na, Mg, and Al.

Fitting the multinomial logistic regression model with penalty λ = 1.0 to the
194 shards that had been randomly selected from the 214 shards, predicting the
probabilities and classifying the remaining 20 items, and repeating the out-of-
sample prediction/classification 100 times, leads to 65% correct classification. This
is not much of an improvement over the results of the multinomial logistic model
with just three covariates (which was 60%).

library(textir)

library(MASS) ## a library of example datasets

data(fgl) ## loads the data into R; see help(fgl)

covars <- normalize(fgl[,1:9],s=sdev(fgl[,1:9]))

sd(covars)

set.seed(1)

pp=dim(6)

out=dim(20)

proportion=dim(100)

n=length(fgl$type)

nt=n-20

for (kkk in 1:100) {

train <- sample(1:n,nt)

glasslm=mnlm(counts=fgl$type[train],penalty=1,

+ covars=covars[train,])

prob=predict(glasslm,covars[-train,])
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for (k in 1:20) {

pp=prob[k,]

out[k]=max(pp)==pp[fgl$type[-train]][k]

}

proportion[kkk]=sum(out)/20

}

proportion

mean(proportion)

boxplot(proportion)

Finally, we enlarge our model by including all interaction effects. This new
model includes 1 intercept, 9 linear coefficients, and (9)(8)/2 = 36 cross-products,
for a total of 46 terms and (5)(46) = 230 coefficients as there are six possible
outcomes. One could not fit such a model with maximum likelihood. And even if
one could, it would not be advisable as many of the terms (perhaps even most)
should probably be set zero. One certainly needs a penalty component in the esti-
mation that shrinks (and “zeros out”) unneeded components. Fitting this extremely
overparameterized multinomial logistic regression model with penalty λ = 1.0 to
the 194 shards that had been randomly selected from the 214, predicting the proba-
bilities and classifying the remaining 20 items, and repeating the out-of-sample
prediction/classification 100 times, leads to 68% correct classification, a slight
improvement over the 65% that results from the multinomial logistic model that
models the logits as linear functions of the six covariates.

library(textir)

library(MASS) ## a library of example datasets

data(fgl) ## loads the data into R; see help(fgl)

X <- model.matrix(~.+.^2, data=fgl[,1:9])[,-1]

X[1:3,] ## to see the contents

## -1 removes the intercept

dim(X) ## X has 45 columns

covars <- normalize(X,s=sdev(X))

sd(covars)

set.seed(1)

pp=dim(6)

out=dim(20)

proportion=dim(100)

n=length(fgl$type)

nt=n-20

for (kkk in 1:100) {

train <- sample(1:n,nt)

glasslm=mnlm(counts=fgl$type[train],penalty=1,

+ covars=covars[train,])

prob=predict(glasslm,covars[-train,])
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for (k in 1:20) {

pp=prob[k,]

out[k]=max(pp)==pp[fgl$type[-train]][k]

}

proportion[kkk]=sum(out)/20

}

proportion

mean(proportion)

boxplot(proportion)

All R programs can be found on the webpage that accompanies this book.

APPENDIX 11.A SPECIFICATION OF A SIMPLE TRIPLET MATRIX

The R function mnlm makes use of simple triplet matrices. A simple triplet matrix
is a very efficient representation of a large, but sparse matrix. Consider an n by m
matrix of counts, where n represents the number of cases (observations) and m is
the number of categories. Each row has a one for that observation’s category, and
zeros elsewhere. You can specify this matrix as a standard matrix, or specify it as a
“simple triplet matrix” object using just three elements: The row “i ,” column “j ,”
and entry value “v .” Everything else in the matrix is assumed to be zero. This is
a useful way to store sparse matrices without using too much memory.

Here are some examples:

i=c(1,2,3,4,5,6)

j=c(1,1,1,2,2,2)

v=c(5,5,5,6,6,6)

b=simple_triplet_matrix(i,j,v)

b

A 6x2 simple triplet matrix.

as.matrix(b)[,]

[,1] [,2]
[1,] 5 0
[2,] 5 0
[3,] 5 0
[4,] 0 6
[5,] 0 6
[6,] 0 6

v=c(11,12,22,33,44,55)

b=simple_triplet_matrix(i,j,v)
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as.matrix(b)[,]

[,1] [,2]
[1,] 11 0
[2,] 12 0
[3,] 22 0
[4,] 0 33
[5,] 0 44
[6,] 0 55

i=c(1,2,3,4,5,6)

j=c(1,2,3,4,5,6)

v=c(5,5,5,6,6,6)

b=simple_triplet_matrix(i,j,v)

b

A 6x6 simple triplet matrix.

as.matrix(b)[,]

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 5 0 0 0 0 0
[2,] 0 5 0 0 0 0
[3,] 0 0 5 0 0 0
[4,] 0 0 0 6 0 0
[5,] 0 0 0 0 6 0
[6,] 0 0 0 0 0 6

i=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

j=c(1,1,2,3,3,4,4,4,4,5,5,6,6,6,6,6)

v=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

b=simple_triplet_matrix(i,j,v)

b

A 16x6 simple triplet matrix.

as.matrix(b)[,]

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 0 0 0 0 0
[2,] 1 0 0 0 0 0
[3,] 0 1 0 0 0 0
[4,] 0 0 1 0 0 0
[5,] 0 0 1 0 0 0
[6,] 0 0 0 1 0 0
[7,] 0 0 0 1 0 0
[8,] 0 0 0 1 0 0
[9,] 0 0 0 1 0 0

[10,] 0 0 0 0 1 0
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[11,] 0 0 0 0 1 0
[12,] 0 0 0 0 0 1
[13,] 0 0 0 0 0 1
[14,] 0 0 0 0 0 1
[15,] 0 0 0 0 0 1
[16,] 0 0 0 0 0 1
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CHAPTER 12

More on Classification and a
Discussion on Discriminant Analysis

Assume that we are given an object with known feature vector with k components
x = (x1, x2, . . . , xk )

′ and that we wish to classify this object into one of g mutually
exclusive groups G1, G2, . . . , Gg . Let us start the discussion with two groups, G1
and G2.

Let us assume that there are certain costs of misclassification. Let c(2|1) be the
cost of misclassifying the object into group G2 if it actually belongs to G1, and let
c(1|2) be the cost of misclassifying the object into group G1 if it actually belongs
to G2. We wish to allow for asymmetric cost structure in general, even though in
some cases the costs of misclassification may be the same (i.e., c(2|1) = c(1|2)).

Assume that the features x = (x1, x2, . . . , xk )
′ vary among objects from the same

group, and that the distributions that describe their variability are different for the
two groups. Let f1(x) be the that probability density of the feature vector in group
G1, and let f2(x) be the probability density of the feature vector in group G2.
Let P(2|1) be the probability that we classify an object from G1 into G2, and let
P(1|2) be the probability that we classify an object from G2 into G1. For any
given classification region, these probabilities can be calculated from the densities
f1(x) and f2(x). Furthermore, assume that we have prior probabilities for the group
association of an object. The prior probability that the object is from group G1 is
p1; the prior that it is from group G2 is p2 = 1 − p1. Often there is no strong prior,
and then we assume that p1 = p2 = 0.5.

A sensible classification rule minimizes the expected cost of misclassification,

EMC = c(2|1)P(2|1)p1 + c(1|2)P(1|2)p2. (12.1)

P(2|1)p1 in the earlier equation represents the probability of getting an object
from group G1 and misclassifying it into group G2. This incurs cost c(2|1). Sim-
ilarly, P(1|2)p2 represents the probability of getting an object from group G2 and
misclassifying it into group G1. This incurs cost c(1|2).
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A straightforward proof (involving probability and integral calculus, however),
gives us a rule that minimizes the expected cost of misclassification. It specifies
that we should classify an object with feature vector x into group G2 when

f1(x)

f2(x)
<

c(1|2)

c(2|1)

p2

p1
; (12.2)

otherwise, we classify the object into group G1.
An alternative way to solve the classification problem is to look at the posterior

probability (after having observed the feature vector x ) of the object being in G2.
That is,

P(G2|x) = P(x |G2)P(G2)

P(x |G2)P(G2) + P(x |G1)P(G1)
= f2(x)p2

f2(x)p2 + f1(x)p1
. (12.3)

The rule that classifies an object with feature vector x into G2 for posterior prob-
ability

P(G2|x) = f2(x)p2

f2(x)p2 + f1(x)p1
> c∗ = c(2|1)

c(2|1) + c(1|2)
(12.4)

is equivalent to the rule that minimizes the expected cost of misclassification.
Note that for symmetric cost, the posterior probability is compared to c∗ = 0.5.
It classifies the object with features x into the group with the highest posterior
probability and follows the majority rule assignment.

Simple algebra shows the earlier equivalence:

f2(x)p2

f2(x)p2 + f1(x)p1
> c∗

is equivalent to

f2(x)p2 + f1(x)p1 <
f2(x)p2

c∗

and
f1(x)

f2(x)
<

p2

p1

1 − c∗

c∗ = p2

p1

c(1|2)

c(2|1)
.

In order to make the general classification rule operational, we need to make fur-
ther assumptions about the densities f1(x) and f2(x). A reasonable assumption
for quantitative features (perhaps after some suitable transformation) is normality.
Thus, we assume that f1(x) is the density of a multivariate normal distribution
(k -dimensional, as there are k features) with mean vector E (x) = µ1 and covari-
ance matrix V (x) = �1, and that f2(x) is the density of a multivariate normal
distribution with mean vector E (x) = µ2 and covariance matrix V (x) = �2. For
small samples, this is probably a reasonable assumption, as usually there would
not be enough information in the data to suggest generalizations. For large samples
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(such as they arise in data mining applications), we certainly can relax this para-
metric assumption and use nonparametric procedures such as the nearest neighbor
classification. We discussed this procedure in Chapter 9.

Under the normal distribution assumption we can simplify the ratio f1(x)/f2(x) in
the classification rule in Equation 12.2. After some simplifications (which involve
matrix algebra and knowledge of the multivariate normal distribution), we can
rewrite the earlier classification rule. Accordingly, we classify an object with feature
vector x = (x1, x2, . . . , xk )

′ into group G2 when

−
(

1

2

)
x ′(�−1

1 − �−1
2 )x + (µ′

1�
−1
1 − µ′

2�
−1
2 )x − w∗ < ln

[
c(1|2)

c(2|1)

p2

p1

]
, (12.5)

where

w∗ = 1

2
ln

|�1|
|�2|

+ 1

2
(µ′

1�
−1
1 µ1 − µ′

2�
−1
2 µ2)

is a scalar that depends on the parameters of the two normal distributions. We have
been consistent in denoting the feature vector as a k × 1 column vector and using
the symbol ′ for the transpose in our vector/matrix calculations.

Note that the classification rule in Equation 12.5 defines a quadratic region in
the feature (vector) space, and one speaks of a quadratic discriminant function.
How would one use this rule? From a training set (which consists of the observed
features of n1 objects from group G1 and n2 objects from group G2), we calculate
vectors of sample averages (x1 and x 2) and sample covariance matrices (S1 and S2),
and use them in place of the mean vectors µ1 and µ2, and matrices �1 and �2. For
each new object to be classified, we calculate the left-hand side of Equation 12.5
for given values of the feature vector x . This calculated value for the left-hand
side is compared to the expression on the right-hand side. For equal priors and
symmetric misclassification costs, the right-hand side in Equation 12.5 is equal to
0. If the left-hand side is negative, we classify the object into group G2; otherwise
we classify the object into group G1.

Calculations simplify considerably if we assume equal covariance matrices; that
is, �1 = �2 = �. Then we classify the object into group G2 if

(µ1 − µ2)
′�−1x − 1

2
(µ1 − µ2)

′�−1(µ1 + µ2) < ln

[
c(1|2)

c(2|1)

p2

p1

]
. (12.6)

This equation represents a linear discriminant function; the quadratic function
involving the feature vector has now disappeared, and all that remains are the
linear terms. How would one use this rule? Again, we calculate the sample mean
vectors of the features for groups G1 and G2. The common covariance matrix
� can be estimated from the pooled covariance matrix [(n1 − 1)S1 + (n2 − 1)S2]/
(n1 + n2 − 2).

These classification procedures can be extended to g > 2 groups. If all mis-
classification costs are the same, the rule that minimizes the expected cost of
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misclassification allocates an object with feature vector x to group j if

pj fj (x) > pi fi (x), for all i �= j . (12.7)

This rule is identical to the one that allocates x to the group with the largest
posterior probability.

Again, under normal distribution assumptions these rules simplify. Under the
assumption of equal covariance matrices (i.e., with g groups, �1 = �2 = · · · =
�g = �), the procedure involves the calculation of g (linear) discriminant scores
(which now depend on the g means, µ1, µ2, . . . , µg , the common covariance
matrix �, and the g prior probabilities). We assign an object with feature vector x
to the group with the largest discriminant score.

12.1 FISHER’S LINEAR DISCRIMINANT FUNCTION

Fisher solved the two-group classification problem from another vantage point.
Consider two groups, G1 and G2, feature vector x = (x1, x2, . . . , xk )

′, mean vectors
µ1 = E (x |G1) and µ2 = E (x |G2) for groups G1 and G2, and common covariance
matrix V (x |G1) = V (x |G2) = �. Fisher was looking for a linear transformation
y = �′x that transforms the k -dimensional feature vector x into a scalar variable
y such that in the transformed space the two groups are separated as far as possi-
ble. He calls this function the linear discriminant function. The (scalar) means
of the transformed feature vector are given by µ1y = �′µ1 for group G1 and
µ2y = �′µ2 for group G2. The variance of the linear combination, V (y) = �′��,
is the same for both groups. Fisher’s goal was to separate the means of the
linear transforms, µ1y = �′µ1 and µ2y = �′µ2, as much as possible. Of course,
this had to be done relative to the variability of the transform V (y) = �′�� as
the transform also changes the scale. Fisher found that the transformation that
achieves maximal separation is given by � = �−1(µ1 − µ2). He then used this
transformation in a classification procedure. For a new object with feature vec-
tor x he calculated the value of the discriminant function �′x = (µ1 − µ2)

′�−1x ,
and compared it to the midpoint of the two (univariate) populations means, m =
(1/2)[µ1y + µ2y ] = (1/2)(µ1 − µ2)

′�−1(µ1 + µ2). He showed that the expected
value of (µ1 − µ2)

′�−1x is greater than m for objects from G1, and less than m
for objects from G2. This then led him to classify the object with feature vector x
into group G2 when

(µ1 − µ2)
′�−1x <

1

2
(µ1 − µ2)

′�−1(µ1 + µ2). (12.8)

Look back to the optimal classification rule in Equation 12.6 that we found earlier
in the context of normal distributions with equal covariance matrices, equal prior
probabilities, and equal misclassification costs. We see that this rule and Fisher’s
linear discriminant procedure are identical.
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Fisher extended this approach to g > 2 groups. His extension involves the
determination of two or more discriminant functions that maximize the separa-
tion between groups and, furthermore, are orthogonal to each other. With two
discriminant functions, the observations (and also their group means) are trans-
formed into a two-dimensional discriminant space, and in that transformed space
new observations are assigned to groups by minimizing their Euclidean distances to
the group averages. Fisher’s approach reduces the dimensions from a usually large
number of characteristics (k ) to a relatively small number of linear combinations,
giving an excellent graphical display of possible groupings. Fisher’s approach with
r = min(g − 1, k) discriminant functions is equivalent to the approach that clas-
sifies observations into the group with the largest linear discriminant score that is
calculated assuming equal priors (Johnson and Wichern, 1988, p. 524).

We consider four examples. We analyze Fisher’s iris data and data on MBA
applications that have been taken from Johnson and Wichern (1988). The latter
example should be of interest to a business audience. In addition, we provide
another analysis of the forensic glass data set and the German default data that
have been used in previous chapters. The findings from discriminant analysis can
be compared to earlier results on (i) nearest neighbor analysis and (ii) logistic
regression. The functions lda and qda in the R library MASS are used for linear
and quadratic discriminant analysis. After listing the R programs (which are also
given on the webpage that accompanies this text), we interpret the cross-validation
performance of these discriminant procedures.

12.2 EXAMPLE 1: GERMAN CREDIT DATA

#### ******* German Credit Data ******* ####

#### ******* data on 1000 loans ******* ####

library(MASS)

## MASS includes lda and qda for discriminant analysis

set.seed(1)

## read data and create some ’interesting’ variables

credit <- read.csv("C:/DataMining/Data/germancredit.csv")

credit

credit$Default <- factor(credit$Default)

## re-level the credit history and a few other variables

credit$history = factor(credit$history, levels=c("A30","A31",

+ "A32","A33","A34"))

levels(credit$history) = c("good","good","poor","poor",

+ " terrible")

credit$foreign <- factor(credit$foreign,levels=c("A201",

+ "A202"),labels=c("foreign","german"))
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credit$rent <- factor(credit$housing=="A151")

credit$purpose <- factor(credit$purpose,

levels=c("A40","A41","A42","A43","A44","A45","A46","A47",

+ "A48","A49","A410"))

levels(credit$purpose) <-c("newcar","usedcar",rep("goods/repair",4),

+ "edu",NA,"edu","biz","biz")

## take the continuous variables duration, amount,

## installment, age. With indicators the assumptions of a

## normal distribution would be tenuous at best; hence these

## variables are not considered here

cred1=credit[, c("Default","duration","amount","installment",

+ "age")]

cred1

summary(cred1)

hist(cred1$duration)

hist(cred1$amount)

hist(cred1$installment)

hist(cred1$age)

cred1$Default

cred1=data.frame(cred1)

## linear discriminant analysis

## class proportions of the training set used as prior

## probabilities

zlin=lda(Default~.,cred1)

predict(zlin,newdata=data.frame(duration=6,amount=1100,

+ installment=4,age=67))

predict(zlin,newdata=data.frame(duration=6,amount=1100,

+ installment=4,age=67))$class

zqua=qda(Default~.,cred1)

predict(zqua,newdata=data.frame(duration=6,amount=1100,

+ installment=4,age=67))

predict(zqua,newdata=data.frame(duration=6,amount=1100,

+ installment=4,age=67))$class

n=1000

neval=1

errlin=dim(n)

errqua=dim(n)

## leave-one-out evaluation

for (k in 1:n) {

train1=c(1:n)

train=train1[train1!=k]
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## linear discriminant analysis

zlin=lda(Default~.,cred1[train,])

predict(zlin,cred1[-train,])$class

tablin=table(cred1$Default[-train],predict(zlin,

+ cred1[-train,])$class)

errlin[k]=(neval-sum(diag(tablin)))/neval

## quadratic discriminant analysis

zqua=qda(Default~.,cred1[train,])

predict(zqua,cred1[-train,])$class

tablin=table(cred1$Default[-train],predict(zqua,

+ cred1[-train,])$class)

errqua[k]=(neval-sum(diag(tablin)))/neval

}

merrlin=mean(errlin)

merrlin

merrqua=mean(errqua)

merrqua

Crossvalidation leads to a 29.0% misclassification rate for linear discriminant
analysis and 29.5% for quadratic discriminant analysis.

12.3 EXAMPLE 2: FISHER IRIS DATA

We consider three different species of irises (50 each). Four characteristics are
measured on each iris: Sepal.Length, Sepal.Width, Petal.Length, and Petal.Width.
The objective is to classify each iris on the basis of these four features.

library(MASS)

## MASS includes lda and qda for discriminant analysis

set.seed(1)

Iris=data.frame(rbind(iris3[,,1],iris3[,,2],iris3[,,3]),

+ Sp=rep(c("s","c","v"),rep(50,3)))

Iris

## linear discriminant analysis

## equal prior probabilities as same number from each species

zlin=lda(Sp~.,Iris,prior=c(1,1,1)/3)

predict(zlin,newdata=data.frame(Sepal.L.=5.1,Sepal.W.=3.5,

+ Petal.L.=1.4, Petal.W.=0.2))

predict(zlin,newdata=data.frame(Sepal.L.=5.1,Sepal.W.=3.5,

+ Petal.L.=1.4, Petal.W.=0.2))$class

## quadratic discriminant analysis

zqua=lda(Sp~.,Iris,prior=c(1,1,1)/3)

predict(zqua,newdata=data.frame(Sepal.L.=5.1,Sepal.W.=3.5,

+ Petal.L.=1.4, Petal.W.=0.2))

predict(zqua,newdata=data.frame(Sepal.L.=5.1,Sepal.W.=3.5,

+ Petal.L.=1.4, Petal.W.=0.2))$class
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n=150

nt=100

neval=n-nt

rep=1000

errlin=dim(rep)

errqua=dim(rep)

for (k in 1:rep) {

train=sample(1:n,nt)

## linear discriminant analysis

m1=lda(Sp~.,Iris[train,],prior=c(1,1,1)/3)

predict(m1,Iris[-train,])$class

tablin=table(Iris$Sp[-train],predict(m1,Iris[-train,])$class)

errlin[k]=(neval-sum(diag(tablin)))/neval

## quadratic discriminant analysis

m2=qda(Sp~.,Iris[train,],prior=c(1,1,1)/3)

predict(m2,Iris[-train,])$class

tablin=table(Iris$Sp[-train],predict(m2,Iris[-train,])$class)

errqua[k]=(neval-sum(diag(tablin)))/neval

}

merrlin=mean(errlin)

merrlin

merrqua=mean(errqua)

merrqua

We evaluate linear and quadratic discriminant analyses by randomly selecting 100
of 150 plants, estimating the parameters from the training data, and classifying the
remaining 50 plants of the holdout sample. We repeat this 1000 times. We achieve
a 2.16% misclassification rate for linear discriminant analysis (and 2.61% for the
quadratic version).

12.4 EXAMPLE 3: FORENSIC GLASS DATA

library(MASS)

## MASS includes lda and qda for discriminant analysis

set.seed(1)

data(fgl)

glass=data.frame(fgl)

glass

## linear discriminant analysis

m1=lda(type~.,glass)

m1

predict(m1,newdata=data.frame(RI=3.0,Na=13,Mg=4,Al=1,Si=70,

+ K=0.06,Ca=9,Ba=0,Fe=0))

predict(m1,newdata=data.frame(RI=3.0,Na=13,Mg=4,Al=1,Si=70,

+ K=0.06,Ca=9,Ba=0,Fe=0))$class

www.it-ebooks.info

http://www.it-ebooks.info/


158 MORE ON CLASSIFICATION AND A DISCUSSION ON DISCRIMINANT ANALYSIS

## quadratic discriminant analysis: Not enough data as

## each 9x9 covariance matrix includes (9)(10)/2 = 45

## unknown coefficients

n=length(fgl$type)

nt=200

neval=n-nt

rep=100

errlin=dim(rep)

for (k in 1:rep) {

train=sample(1:n,nt)

glass[train,]

## linear discriminant analysis

m1=lda(type~.,glass[train,])

predict(m1,glass[-train,])$class

tablin=table(glass$type[-train],predict(m1,

+ glass[-train,])$class)

errlin[k]=(neval-sum(diag(tablin)))/neval

}

merrlin=mean(errlin)

merrlin

n=214

neval=1

errlin=dim(n)

errqua=dim(n)

for (k in 1:n) {

train1=c(1:n)

train=train1[train1!=k]

## linear discriminant analysis

m1=lda(type~.,glass[train,])

predict(m1,glass[-train,])$class

tablin=table(glass$type[-train],predict(m1,glass[-train,])

+ $class)

errlin[k]=(neval-sum(diag(tablin)))/neval

}

merrlin=mean(errlin)

merrlin

We evaluate the linear discriminant analysis by randomly selecting 200 of 214
shards, estimating the parameters on the training data, and classifying the remaining
14 shards of the holdout sample. We repeat this 100 times. We achieve a 37.2%
misclassification rate.
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A crossvalidation (leave-one-out) analysis is carried out below. Its mis-
classification error rate of 35.5% is similar to that of the nearest neighbor
algorithm.

n=214

neval=1

errlin=dim(n)

errqua=dim(n)

for (k in 1:n) {

train1=c(1:n)

train=train1[train1!=k]

## linear discriminant analysis

m1=lda(type~.,glass[train,])

predict(m1,glass[-train,])$class

tablin=table(glass$type[-train],predict(m1,glass[-train,])

+ $class)

errlin[k]=(neval-sum(diag(tablin)))/neval

}

merrlin=mean(errlin)

merrlin

12.5 EXAMPLE 4: MBA ADMISSION DATA

Johnson and Wichern (1988, Chapter 11) provide admission data for applicants to
graduate schools in business. The objective is to use the GPA and GMAT scores
to predict the likelihood of admission (admit, notadmit, and borderline).

library(MASS)

set.seed(1)

## reading the data

admit <- read.csv("C:/DataMining/Data/admission.csv")

adm=data.frame(admit)

adm

plot(adm$GPA,adm$GMAT,col=adm$De)

## linear discriminant analysis

m1=lda(De~.,adm)

m1

predict(m1,newdata=data.frame(GPA=3.21,GMAT=497))

## quadratic discriminant analysis

m2=qda(De~.,adm)

m2

predict(m2,newdata=data.frame(GPA=3.21,GMAT=497))
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n=85

nt=60

neval=n-nt

rep=100

errlin=dim(rep)

for (k in 1:rep) {

train=sample(1:n,nt)

## linear discriminant analysis

m1=lda(De~.,adm[train,])

predict(m1,adm[-train,])$class

tablin=table(adm$De[-train],predict(m1,adm[-train,])$class)

errlin[k]=(neval-sum(diag(tablin)))/neval

}

merrlin=mean(errlin)

merrlin

We evaluate the linear discriminant analysis by randomly selecting 60 of 85 stu-
dents, estimating the parameters on the training data, and classifying the remaining
25 students of the holdout sample. We repeat this 100 times. We achieve a 9.4%
misclassification rate.

REFERENCE
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CHAPTER 13

Decision Trees

Ordinary regression, logistic regression, and multinomial logistic regression are
discussed in Chapters 3, 7, and 11 of this book. These methods relate a response
variable (a continuous variable in ordinary regression, and a categorical variable
with two or more outcome groups in logistic and multinomial logistic regression)
to a set of explanatory variables. A common feature of regression models is their
parametric nature. Most often, linear relationships are being considered, which
means that the effect on the response of a change in the explanatory variable from
x to x + 1 is the same for any value x . Furthermore, it is usually assumed that
the effect does not depend on the levels of other explanatory variables. Of course,
these assumptions can be relaxed with the introduction of quadratic (or higher
order) terms and components that allow for interaction. While it is then true that
the effect of a change in x depends on the value of x and those of other covariates,
the dependence is still parametric (e.g., as implied by the quadratic function).
With the decision trees and regression/classification trees that are discussed in
this and the next chapter, the models become truly nonparametric and they allow
for very flexible representations. Decision trees provide a convenient and efficient
representation of knowledge.

Decision trees use a tree-logic to make predictions. Classification and regression
trees are known under their acronym CART. We talk about classification trees if the
response is categorical; we talk about regression trees if the response is continuous.
Regression trees try to predict a (numeric) mean response at the leaves of the tree,
such as the expected amount of rain in inches, or the expected default rate on loans.
Classification trees try to predict the class probabilities at the leaves, such as the
probability that there will be rain, the probability of defaulting on a loan, or the
preference for one of five different types of movie genres.

Let us start the discussion with a very simple example of a decision tree. Here,
the decision is whether or not to take an umbrella. The decision depends on the
weather, on the predicted rain probability, and on whether it is sunny or cloudy
when you leave the house. You can go through the various decision nodes of the
diagram and determine whether you should take an umbrella or leave it at home.

Data Mining and Business Analytics with R, First Edition. Johannes Ledolter.
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For example, if the forecast predicts rain with a probability between 30% and 70%
and if it is cloudy when you leave the house, you better take an umbrella. Tree-
logic uses a series of steps to come to a conclusion. The trick is to combine several
mini-decisions such that they result in good choices.

> 70% Rain

> 30% Rain

Cloudy

Sunny

Umbrella

Umbrella

No Umbrella

No Umbrella
< 30% Rain

< 70% Rain

Wake Up

Each decision defines a node. The final prediction is made at a leaf or termi-
nal node. A given set of covariates x dictates your path through the tree nodes,
eventually leading to a leaf (or terminal) node at the end of the tree.

In our illustrative example, the path through the tree and the splits at the various
nodes are assumed given. In actual applications, one has a training set with known
outcomes, and the path through the tree and the splits need to be estimated. We
need a way to estimate the sequence of decisions. How many decision nodes should
there be? What is the order of making the decisions? Obviously, there is a huge
set of possible tree configurations. We solve the problem by thinking recursively
and by always splitting a node into just two branches. We start by splitting the
complete data into two branches that make different decisions about the response y .
Then we take each new partition and split it again into two, and again, and again,
and so on.

Growing a tree with the CART algorithm involves the following steps. Find the
split location in a covariate x that minimizes a certain measure of node impurity of
the tree (node impurity is explained below). If, for example, the set of covariates
comprises five variables, we try each variable one at a time, find the best two-way
split on each variable, and select the variable and the split that minimize the node
impurity of the tree. This certainly involves many computations and queries, but fast
and efficient computer software is available. In the regression tree, the predictions
at the nodes are given by the mean responses. Class proportions characterize the
nodes in the classification tree, with the most frequent category representing the
predicted classification.
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Each child node of the split tree contains a subset of the data, with its own
predicted ŷ and p̂. View each child as a new data set, and grow the tree from there.
Stop growing when no split reduces the node impurity of the tree. Instead of being
based on (regression) coefficients, the predictions (the ŷ in the regression tree, and
the predicted probabilities p̂ in the classification tree) are functions of decisions at
the decision nodes (which depend on the covariates in some nonparametric way).

Programs are available for regression and classification trees. We use the R
package tree, with syntax

mytree = tree(y ~ x1 + x2 + x3…, data=mydata)

There are a few additional arguments in this function, all of which dictate the
splitting of the tree. Requirements on minimum leaf size (number of observations
in a leaf), minimum improvement in node impurity, and maximum depth of the
tree (number of splits within the longest branch) avoid trees that are split too often.
One can print, summarize, and plot the tree.

Regression and classification trees partition a data set into exhaustive and
nonoverlapping nodes. The data partitioning is nonoverlapping (every element of
the data set is part of just one node) and exhaustive (every element of the data
set must fall into one of the nodes). At each node of the tree, the response of
interest is summarized by an average response (for regression trees) or a frequency
distribution (for classification trees).

Tree construction uses a recursive partitioning of the data set; the approach
is also referred to as divide-and-conquer partitioning. At each stage, the data set
is split into two nonoverlapping, smaller data sets. The objective of a split is to
increase the homogeneity of the resulting smaller data sets with respect to the
target variable (alternatively, we can think of this as decreasing the impurity, or
the disorder). We continually divide the data set by creating node splits of smaller
and smaller data sets.

We need a measure of node impurity that guides our splitting of the data set and
that tells us whether it makes sense to split a certain node even further. For regres-
sion trees, which predict a numerical response y , we use the regression deviance.
The regression deviance at a given node of the regression tree is the sum of squares
Dnode = ∑n

i=1 (yi − y)2. Here, y1, y2, . . . , yn are the responses of the data elements
that make up the node, and y is their average. The regression deviance measures
the node impurity (disorder) and assesses the homogeneity of the responses within
the node. The deviance is simply the sum of the squared residuals, with the resid-
ual defined as the difference between the observation and the group (node) mean.
Here we have defined the deviance of a single node in a tree. The deviance of a
regression tree T, described by an exhaustive collection of nonoverlapping nodes, is
obtained by adding the deviances of its nodes; that is, DT = ∑

Dnode. Small values
of the deviance reflect homogeneity and node purity (or node order). Consider an
initial regression tree T1 and a regression tree T2 that splits one of the nodes of T1
into two and represents each of the child nodes by their average. Splitting a node
of a tree into two can never increase the deviance of the tree, as any split allows
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Table 13.1 Splitting a Regression Tree

Mean Mean Deviance Deviance Deviance
x y y Left y Right Left Right Tree

No split 17.2
1 10 Split at 1 10 8 0 14 14
2 8 Split at 2 9 8 2 14 16
4 11 Split at 4 29/3 6.5 4.667 0.5 5.167 Best split
6 7 Split at 6 9 6 10 0 10
8 6 No split 17.2

for more flexibility (in the worst case, the averages of the two split nodes are the
same). Hence the difference between the deviance of the initial tree T1 (DT1) and
the deviance of tree T2 (DT2), DT1 − DT2 ≥ 0, reflects the benefit of the splitting.
We want this difference to be as large as possible. Computer programs refer to
the regression deviance also as the analysis of variance (ANOVA) deviance, as the
analysis of variance in statistics deals with partitioning sums of squares.

For splitting a node on a continuous variable, we order the continuous variable
from the smallest to the largest value and evaluate the impurity measures for splits
at the order statistics, subject to satisfying the requirements on the minimum number
of units in each node. For simplicity, take a small data set with five observations
on a single attribute x and a continuous response y . The data in Table 13.1 are
already ordered on the values of the attribute. The mean of all five observations is
8.4, and the ANOVA deviance of the data is

(10 − 8.4)2 + (8 − 8.4)2 + (11 − 8.4)2 + (7 − 8.4)2 + (6 − 8.4)2 = 17.2.

For the first possible split, which puts units with x ≤ 1 into the lower node
and units with x > 1 into the upper node, the ANOVA deviance for the left node
is (10 − 10)2 = 0, and the ANOVA deviance for the right node is (8 − 8)2 +
(11 − 8)2 + (7 − 8)2 + (6 − 8)2 = 14. The deviance of the split tree is 14. For
the second split, which puts units with x ≤ 2 into the lower node and units with
x > 2 into the upper node, the ANOVA deviance for the lower (left) node is
(10 − 9)2 + (8 − 9)2 = 2, and the ANOVA deviance for the upper (right) node is
(11 − 8)2 + (7 − 8)2 + (6 − 8)2 = 14. The deviance of the split tree is 16. For the
third split, which puts units with x ≤ 4 into the lower node and units with x > 4
into the upper node, the ANOVA deviance for the left node is (10 − 29/3)2 +
(8 − 29/3)2 + (11 − 29/3)2 = 42/9 = 4.667, and the ANOVA deviance for the
right node is (7 − 6.5)2 + (6 − 6.5)2 = 0.50. The deviance of the split tree is 5.167.
For the fourth and final split, which puts units with x ≤ 6 into the lower node and
units with x > 6 into the upper node, the ANOVA deviance for the left node is
(10 − 9)2 + (8 − 9)2 + (11 − 9)2 + (7 − 9)2 = 10, and the ANOVA deviance for
the right node is (6 − 6)2 = 0. The deviance of the split tree is 10.

The best split is the third split, which puts units with x ≤ 4 into the lower node
and units with x > 4 into the upper node. This example illustrates the calculations
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that need to be carried out. Remember that the software for constructing trees has
to perform these tasks not just for small data sets of five observations, but for large
data sets; also, it has to do this for several variables and not just one; and it has to
do this repeatedly as the data set is being divided into smaller and smaller splits.
Fortunately, efficient and fast procedures for doing this are readily available.

How does the search change if one has a categorical attribute x with, say, three
possible groups (e.g., three different sales districts, A, B, and C)? Then we need to
evaluate the deviance of the following 2(3−1) − 1 = 3 splits: (A) versus (B,C); (B)
versus (A,C); and (C) versus (A,B). What if there are four possible groups? Then we
need to evaluate 2(4−1) − 1 = 7 splits: (A) versus (B,C,D); (B) versus (A,C,D); (C)
versus (A,B,D); (D) versus (A,B,C); (A,B) versus (C,D); (A,C) versus (B,D); and
(A,D) versus (B,C). In general, for categorical variables with k possible outcomes,
one has to evaluate the deviance of 2(k−1) − 1 splits.

In the classification setting, the response is a class assignment with m different
possible outcomes. Consider a node with n data elements and number of occur-
rences n1, n2, . . . , nm for the m possible outcomes (n = n1 + n2 + · · · + nm ). We
need a measure that assesses the impurity of the classification within that node.
A node that classifies all its items into a single category (i.e., achieves a classi-
fication with 100% certainty) needs no additional help (additional information) to
classify an observation. It represents maximal homogeneity, maximal information,
and minimal node impurity. On the other hand, a node that assigns its elements
evenly among two or more outcomes (for two outcomes, half of the observations
of the node are assigned to one outcome group, while the other half is assigned to
the other) describes a situation of minimal homogeneity, minimal information, and
maximal impurity. A measure of impurity for a node with number of occurrences
n1, n2, . . . , nm for the m possible outcomes (n = n1 + n2 + · · · + nm ) is provided
by the classification deviance,

Dnode = −2
m∑

k=1

nk log
(nk

n

)
= −2

[
m∑

k=1

nk log
(
nk

) − n log(n)

]
,

with 0 log(0) = 0. For a perfect classification (and no impurity) at that node,
DNode = 0. For n observations assigned evenly to the m possible outcomes and
maximum impurity, DNode = 2n log(m). Here we have defined the deviance of
a single node in a tree. The deviance of a classification tree T, described by an
exhaustive collection of nonoverlapping nodes, is obtained by adding the deviances
of its nodes; that is, DT = ∑

Dnode. Splitting a node of a tree into two by minimiz-
ing the sum of deviances from the two resulting nodes can never increase the tree
deviance; in the worst case, the sum of the deviances equals the deviance of the
unsplit node. The difference between the deviance of the initial tree T1 (DT1) and
the deviance of tree T2 (DT2), DT1 − DT2 ≥ 0, reflects the benefit of the splitting.
Again, we want to find the variables on which to split and the values for the splits
such that this difference is as large as possible.

Let us describe the classification deviance with a simple example. Consider the
classification into just two groups. Suppose the data set of 100 observations has 60
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YES and 40 NO. The node impurity is expressed by the classification deviance

−2[60 log(60) + 40 log(40) − 100 log(100)] = 134.60.

Assume that a certain covariate splits the data set of 100 into two groups of sizes
30 and 70. In scenario 1, the proportions of YES and NO stay the same, that is G1:
(YES = 18, NO = 12) and G2: (YES = 42, NO = 28). The classification
deviance of the split tree is

−2[18 log(18) + 12 log(12) − 30 log(30)] − 2[42 log(42)+ 28 log(28)− 70 log(70)]

= 40.38 + 94.22 = 134.60.

We see that the change in deviance is 134.60 − 134.60 = 0, which tells us that
there is no benefit in splitting the tree. The split has not increased the homogeneity
of the tree.

Under scenario 2, the proportions of YES and NO exhibit greater homogeneity.
Suppose G1: (YES = 25, NO = 5) and G2: (YES = 35, NO = 35), as
the numbers of YES need to add up to 60. The classification deviance of the split
tree is

−2[25 log(25) + 5 log(5) − 30 log(30)] − 2[35 log(35) + 35 log(35) − 70 log(70)]

= 27.03 + 97.04 = 124.07.

The change in deviance is 134.60 − 124.07 = 10.53, which tells us that there is a
benefit in splitting the tree. This particular split has increased the homogeneity of
the tree. However, there may be other splits that are even better.

The literature and computer programs refer to the classification deviance as
the entropy (or the information) criterion. Why is it referred to as entropy?
The entropy of a discrete random variable with m possible outcome values
o1, o2, . . . , om and associated probabilities p(o1), p(o2), . . . , p(om) is given
by E = −∑m

k=1 p(ok ) log(p(ok )). It measures the information content of a
random variable, with small values of entropy reflecting homogeneity or little
impurity (disorder). For two groups (m = 2) and p(o1) = p and p(o2) = 1 − p,
the entropy is given by E = −p log(p) − (1 − p) log(1 − p). The entropy
is 0 for p = p(o1) = 1 or p = p(o1) = 0, and it is largest (it is log(2)) for
p = p(o1) = p(o2) = 0.5. Replacing the unknown class probabilities p(ok )

with relative frequencies nk /n provides an estimate of the entropy of a single
realization. This must be multiplied by n , as the node contains n data elements,
resulting in the node entropy −∑m

k=1 nk log(nk/n). Apart from the factor 2, this
is the classification deviance. But the multiplication by 2 makes no difference to
how splits are carried out, as we compare the difference of the entropies before
and after a split. The factor 2 in our deviance definition can be justified from
maximum likelihood ratio tests that compare twice the difference of the logarithms
of the likelihoods of two competing models: in our case, the trees before and after
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a split. Assuming a multinomial distribution for the occurrences in m groups leads
to our classification deviance, which includes the multiple 2.

Other criteria for splitting a classification tree are available, such as the Gini
index or the number of misclassifications that are made when assigning a node
element to the most common category in that node. The Gini index,

Gini =
m∑

k=1

p(ok )[1 − p(ok )] = 1 −
m∑

k=1

[p(ok )]
2,

leads to the node similarity measure Gininode = ∑m
k=1 nk [1 − (nk/n)]. It is quite

similar to the deviance (or entropy), and it usually leads to very similar splits.
To see the similarity, take the binary classification (m = 2) as an example, with
p(o1) = p and p(o2) = 1 − p. The Gini index is 2p(1 − p), and we saw earlier that
the entropy is −p log(p) − (1 − p) log(1 − p). The misclassification error is also
easy to determine; it is given by min(p, 1 − p). The graph of these three measures
against p in Figure 13.1 shows their close similarity. The entropy and the Gini
index are differentiable for all p, which makes them more amenable to numeric
optimization.

13.1 EXAMPLE 1: PROSTATE CANCER

Let us consider the example of prostate cancer that we analyzed previously in the
context of our discussion of penalized variable selection (LASSO) in Chapter 6.
Biopsy results are available for n = 97 men of various ages. The information
includes
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Figure 13.1 Node impurity measures in the two-class classification as a function of the
proportion of falling into class 1. The entropy measure has been scaled to pass through the
point (0.5,0.5).
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Gleason Score (gleason): scores are assigned to the two most common tumor
patterns, ranging from 2 to 10; in this data set, the range is from 6 to 9.

Prostate-specific antigen (psa): laboratory results on protein production.
Capsular penetration (cp): reach of cancer into gland lining.
Benign prostatic hyperplasia amount (bph): size of prostate.

The goal is to predict tumor log volume (which measures the tumor’s
size/spread). The predicted tumor size affects the patients’ treatment options,
which include chemotherapy, radiation treatment, and surgical removal of the
prostate.

The data on the 97 prostate cancer patients is given below. The response is
log volume (lcavol). We try to predict this variable from five covariates (age;
logarithms of bph, cp, and psa; and the Gleason score). Here the response is a
continuous measurement variable, and we are dealing with a regression tree. We
use the sum of squared residuals as the impurity (fitting) criterion.

prostate <- read.csv("C:/DataMining/Data/prostate.csv")

prostate

lcavol age lbph lcp gleason lpsa
1 -0.579818495 50 –1.38629436 -1.38629436 6 –0.4307829
2 -0.994252273 58 –1.38629436 -1.38629436 6 –0.1625189
3 -0.510825624 74 –1.38629436 -1.38629436 7 –0.1625189
4 -1.203972804 58 –1.38629436 -1.38629436 6 –0.1625189
.
.
.
94 3.821003607 44 –1.38629436 2.16905370 7 4.6844434
95 2.907447359 52 –1.38629436 2.46385324 7 5.1431245
96 2.882563575 68 1.55814462 1.55814462 7 5.4775090
97 3.471966453 68 0.43825493 2.90416508 7 5.5829322

library(tree)

pstree <- tree(lcavol ~., data=prostate, mincut=1)

pstree

node), split, n, deviance, yval
* denotes terminal node

1) root 97 133.4000 1.35000
2) lcp < 0.261624 63 64.1100 0.79250

4) lpsa < 2.30257 35 24.7200 0.27870
8) lpsa < 0.104522 4 0.3311 -0.82220 *
9) lpsa > 0.104522 31 18.9200 0.42070
18) age < 52 3 0.1195 -0.79620 *
19) age > 52 28 13.8800 0.55110
38) lbph < 1.09012 18 6.3190 0.73790

76) age < 65.5 14 4.0670 0.55550
152) lcp < -0.698172 11 2.1200 0.37820 *
153) lcp > -0.698172 3 0.3329 1.20600 *

77) age > 65.5 4 0.1552 1.37600 *
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39) lbph > 1.09012 10 5.8010 0.21490
78) lpsa < 1.96623 7 2.8370 -0.08817 *
79) lpsa > 1.96623 3 0.8212 0.92200 *

5) lpsa > 2.30257 28 18.6000 1.43500
10) lpsa < 3.24598 23 11.6100 1.23300 *
11) lpsa > 3.24598 5 1.7560 2.36200 *

3) lcp > 0.261624 34 13.3900 2.38300
6) lcp < 2.13963 25 6.6620 2.14700
12) age < 62.5 7 0.7253 1.68600 *
13) age > 62.5 18 3.8700 2.32600 *
7) lcp > 2.13963 9 1.4750 3.03800 *

plot(pstree, col=8)

text(pstree, digits=2)

lcp < 0.261624

lpsa < 2.30257

lpsa < 0.104522

age < 52
lbph < 1.09012

age < 65.5
lcp < 0.698172

lpsa < 1.96623

lpsa < 3.24598

lcp < 2.13963

age < 62.5

0.820

0.800

0.380 1.200 1.400 0.088 0.920

1.200 2.400

1.700 2.300
3.000
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We obtain a tree with 12 leaf nodes (just count up the number of terminal nodes).
The size of our tree is 12. The graphs, with and without text, show the nodes and
how they are split. The y-axis on the graph reflects the deviances of the various
trees that are fit to the data. We start on top at the root of the tree. The deviance
(the sum of squares from the single mean 1.35) is 133.4. The first split is on log
capsular penetration, with lcp < 0.261624 (node 2) and lcp > 0.261624 (node
3). The deviance of the tree with just this one split is 64.11 + 13.39 = 77.5.
The reduction from 133.4 to 77.5 is reflected on the y-axis of the graph. The next
split (under lcp < 0.261624) is on lpsa, creating node 4 (lpsa < 2.30257) and
node 5 (lpsa > 2.30257), and so on. The reductions in deviances become smaller
and smaller, which unfortunately often creates an overlap in the printed labels of
the tree.

How does one use this tree for prediction? As illustration, take a patient, 65
years old and with lcp = 2 (log capsular penetration). What is his prediction of
log tumor size? Looking at the splits on the tree, you go right on the first split
(lcp > 0.261624), left on the second split (lcp < 2.13963), and right on the third
split (age > 62.5): the model predicts 2.30 for his log volume. What about a patient
with lcp = 0.20 and lpsa = 2.40? His prediction for log volume is 1.20, and so
on.

CART represents a pretty powerful nonparametric technique that generalizes
parametric regression models. It allows for nonlinearity and variable interactions
without having to specify the structure in advance. Moreover, violations of con-
stant variance (a critical assumption in regression) are no problem. But the biggest
challenge with such flexible models is how to avoid overfitting. If the splitting
algorithm is not stopped, the tree algorithm will ultimately “extract” all informa-
tion from the data, including information that is not and cannot be predicted in the
population with the current set of predictors. In other words, it extracts random
or noise variation. The first defense against overfitting is to stop generating new
split nodes when subsequent splits result only in very little overall improvement of
the prediction. For example, if we can predict 90% of all cases correctly from 10
splits, and 90.1% of all cases from 11 splits, then it obviously makes little sense to
add that 11th split to the tree. There are several criteria for automatically stopping
the splitting (tree-building) process. The basic constraints (mincut, mindev) lead to
a full tree fit with a certain number of terminal nodes. In the prostate example, we
specified mincut = 1 (minimum number of observations to include in a child node
is 1) and obtained a tree of size 12. If we specify mincut = 5, the final tree ends
up with fewer leaf nodes and a smaller size. Check that its size is 9.

Once the tree-building algorithm has stopped, it is always useful to evaluate the
quality of the prediction of the current tree in samples of observations that did not
participate in the fitting computations. Such cross-validation subjects the tree com-
puted from one set of observations (the learning sample) to another independent set
of observations (the evaluation/test sample). If most or all of the splits determined
by the analysis of the learning sample are essentially based on “random noise,”
then the prediction for the test sample will be poor. If one sees a big difference
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between the in-sample and the out-of-sample performance, one can infer that the
selected tree is not very useful, and not of the “right size.”

Pruning back the tree is another good defense against overfitting. There, we
select a simpler tree than the tree that resulted from the tree-building (i.e., the
growing) algorithm. The hope is that the simpler tree does better when it is used to
predict or classify “new” observations. We prune the tree by removing splits from
the bottom up. At each step, we remove the split that contributes least to deviance
reduction, thus reversing CART’s growth process. Instead of deviance reduction,
one can also look at the change in the number of misclassification, if this is felt to
be a more appropriate criterion. Each prune step produces a candidate tree model,
now of reduced size (number of terminal nodes).

Let us explain this in more detail. Assume that our criterion for pruning the tree
is the minimization of the deviance of the tree. With this objective function, the in-
sample (training set) performance will only get worse with pruning as every pruned
tree will have a larger deviance; remember that we grew the tree by minimizing
the deviance, and so, taking away a split that we found useful in growing the tree
will make things worse. To achieve some pruning, we must modify the objective
function and introduce a penalty for the complexity of the tree. This is reasonable,
as we know that overfitting the data will hurt our out-of-sample predictions. Instead
of minimizing the deviance of the tree, D(T), the pruning step minimizes the cost
complexity of the tree, D(T) + αSize(T). The size of the tree T is the number of its
terminal nodes, and α is a penalty term. We already saw that with α = 0 (i.e., no
penalty for the size of the tree), our final grown tree cannot be simplified (pruned).
For illustration, look at terminal nodes 152 and 153 at the very bottom of the
tree. Pruning that split increases the deviance by 4.0670 − (2.1200 + 0.3329) =
1.6151; for α = 0, no pruning step is executed and we keep our final tree of size 12.
What if the penalty is α = 1.7? Then the increase in the deviance (1.6151) is less
than the penalty that is associated with the one extra node (1.7), and in this case, the
tree could be pruned back. Let us check whether additional pruning among other
terminal nodes can be done. What about terminal nodes 78 and 79? They cannot
be pruned as the increase in deviance 5.8010 − (2.8370 + 0.8212) = 2.1428 >

1.70. What about the five terminal nodes 152, 153, 77, 78, and 79? They cannot
be pruned, as the increase in deviance 13.8800 − (2.1200 + 0.3329 + 0.1552 +
2.8370 + 0.8212) = 7.6137 is larger than four times the penalty, (4)(1.7) = 6.80,
and so on. It turns out that nodes 152 and 153 are the only nodes that can be
pruned. The simplified tree has size 11. This is what you see by executing the
prune step with α = 1.7 (note that the R function prune.tree uses the letter k for
the penalty term).

pstcut <- prune.tree(pstree,k=1.7)

plot(pstcut)

pstcut

node), split, n, deviance, yval
* denotes terminal node
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1) root 97 133.4000 1.35000
2) lcp < 0.261624 63 64.1100 0.79250

4) lpsa < 2.30257 35 24.7200 0.27870
8) lpsa < 0.104522 4 0.3311 -0.82220 *
9) lpsa > 0.104522 31 18.9200 0.42070
18) age < 52 3 0.1195 -0.79620 *
19) age > 52 28 13.8800 0.55110

38) lbph < 1.09012 18 6.3190 0.73790
76) age < 65.5 14 4.0670 0.55550 *
77) age > 65.5 4 0.1552 1.37600 *

39) lbph > 1.09012 10 5.8010 0.21490
78) lpsa < 1.96623 7 2.8370 -0.08817 *
79) lpsa > 1.96623 3 0.8212 0.92200 *

5) lpsa > 2.30257 28 18.6000 1.43500
10) lpsa < 3.24598 23 11.6100 1.23300 *
11) lpsa > 3.24598 5 1.7560 2.36200 *

3) lcp > 0.261624 34 13.3900 2.38300
6) lcp < 2.13963 25 6.6620 2.14700
12) age < 62.5 7 0.7253 1.68600 *
13) age > 62.5 18 3.8700 2.32600 *

7) lcp > 2.13963 9 1.4750 3.03800 *

Now let us consider α = 2.05, and investigate whether further pruning can be
done. Terminal nodes 12 and 13 cannot be pruned, as the increase in deviance
6.6620 − (0.7253 + 3.8700) = 2.0667 > 2.05, the penalty for that one extra ter-
minal node. Terminal nodes 10 and 11 cannot be pruned either, as the increase
in deviance 18.6000 − (11.6100 + 1.7560) = 5.2340 > 2.05, the penalty for that
one extra terminal node. However, the four terminal nodes 76, 77, 78, and 79 can be
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pruned at the same time. The increase in deviance 13.8800 − (6.3190 + 5.8010) =
1.7600 is smaller than the penalty (3)(2.05) = 6.15; here the pruning collapses four
leaf nodes into one and the difference in the sizes of the tree is 3. No other pruning
is possible. The pruned tree (given below) has size 8.

pstcut <- prune.tree(pstree,k=2.05)

plot(pstcut)

pstcut

1) root 97 133.4000 1.3500
2) lcp < 0.261624 63 64.1100 0.7925

4) lpsa < 2.30257 35 24.7200 0.2787
8) lpsa < 0.104522 4 0.3311 -0.8222 *
9) lpsa > 0.104522 31 18.9200 0.4207
18) age < 52 3 0.1195 -0.7962 *
19) age > 52 28 13.8800 0.5511 *

5) lpsa > 2.30257 28 18.6000 1.4350
10) lpsa < 3.24598 23 11.6100 1.2330 *
11) lpsa > 3.24598 5 1.7560 2.3620 *

3) lcp > 0.261624 34 13.3900 2.3830
6) lcp < 2.13963 25 6.6620 2.1470
12) age < 62.5 7 0.7253 1.6860 *
13) age > 62.5 18 3.8700 2.3260 *

7) lcp > 2.13963 9 1.4750 3.0380 *

Next, consider the somewhat larger α = 3.0, and investigate whether further
pruning can be done. Nodes 12 and 13 can be pruned. The increase in deviance
6.6620 − (0.7253 + 3.8700) = 2.0667 < 3.0 is smaller than its penalty (note that
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with α = 2.05 these two nodes could not be pruned). Nothing else can be pruned.
For example, terminal nodes 18 and 19 cannot be pruned, as the resulting increase in
deviance 18.9200 − (0.1195 + 13.8800) = 4.9205 > 3.0. The pruned tree (given
below) has size 7.

pstcut <- prune.tree(pstree,k=3)

plot(pstcut)

pstcut

1) root 97 133.4000 1.3500
2) lcp < 0.261624 63 64.1100 0.7925

4) lpsa < 2.30257 35 24.7200 0.2787
8) lpsa < 0.104522 4 0.3311 -0.8222 *
9) lpsa > 0.104522 31 18.9200 0.4207
18) age < 52 3 0.1195 -0.7962 *
19) age > 52 28 13.8800 0.5511 *

5) lpsa > 2.30257 28 18.6000 1.4350
10) lpsa < 3.24598 23 11.6100 1.2330 *
11) lpsa > 3.24598 5 1.7560 2.3620 *

3) lcp > 0.261624 34 13.3900 2.3830
6) lcp < 2.13963 25 6.6620 2.1470 *
7) lcp > 2.13963 9 1.4750 3.0380 *

The R command prune.tree, without specifying the cost complexity parameter
α (labeled as argument k ), traces out the pruned trees for changing α (and implied
size of the tree). Tree deviances are also listed. You get those by adding the
deviances across all leaf nodes. For example, the deviance of the pruned tree
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with α = 1.7 and 11 terminal nodes is 0.3311 + 0.1195 + 4.0670 + 0.1552 +
2.8370 + 0.8212 + 11.6100 + 1.7560 + 0.7253 + 3.8700 + 1.4750 = 27.77.

pstcut <- prune.tree(pstree)
pstcut

$size
[1] 12 11 8 7 6 5 4 3 2 1
$dev
[1] 26.15491 27.76888 33.76664 35.83388 40.75225 45.98251 51.23381
[8] 56.70719 77.50140 133.35903
$k
[1] -Inf 1.613972 1.999253 2.067239 4.918373 5.230262 5.251294
[8] 5.473378 20.794213 55.857635
$method
[1] "deviance"
attr(,"class")
[1] "prune" "tree.sequence"

plot(pstcut)
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Assume that you want a pruned tree of size 7. You could get this tree with
α = 3.0 (in fact, any value that is between 2.067 and 4.918). The deviance of that
tree is 35.83. You can check that a value α = 5.0 leads to a tree of size 6, with
the deviance being 40.75. You can use the earlier table and the associated graph to
trade off the size of the tree and the deviance. The graph shows the tree deviance
as a function of the penalty (x -scale on top) and the size of the tree (x -scale at
bottom). Even a tree of size 3 has fairly acceptable deviance (56.7); it is for trees of
even lower size that the deviance goes up rapidly. You can learn about the structure
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of the tree with three terminal nodes by using the prune.tree command with option
“best = 3”. The deviance of this tree is 24.72 + 18.60 + 13.39 = 56.71.

pstcut <- prune.tree(pstree,best=3)

pstcut

1) root 97 133.40 1.3500
2) lcp < 0.261624 63 64.11 0.7925
4) lpsa < 2.30257 35 24.72 0.2787 *
5) lpsa > 2.30257 28 18.60 1.4350 *

3) lcp > 0.261624 34 13.39 2.3830 *

Note that the in-sample (training set) performance is bound to get worse by
pruning as the tree gets less complicated. However, if a complicated tree is just
“chasing after noise”, then a simpler tree, which does worse on the training set, may
actually predict better on a holdout data set. So an even better way to determine
the size of the tree is to evaluate the performance of the pruned trees on a holdout
sample. There we can compare the out-of-sample prediction performances of the
candidate trees of varying sizes and select the size of tree that performs best.

This method of selecting the right size of a tree from a holdout sample is an
essential step for generating tree models that hold up well for prediction. In order to
perform evaluations to measure the tree performance as a function of tree size, it is
necessary to have evaluation (test) data samples that are independent of the learning
data set that has been used to build the tree. However, independent evaluation data
is often difficult or expensive to obtain, and sometimes it is also undesirable to
hold back data from the learning data set to use for a separate test because that
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weakens the learning data set. We need independent data that was not used to
build the tree to measure the performance, but, on the other hand, we want to use
all data to build the tree. V-fold cross-validation, described below, is a technique
for performing independent tree size tests without requiring separate data sets and
without reducing the data that is used to build the tree.

All of the rows in the learning data set are used to build the tree. This tree
is intentionally allowed to grow larger than is likely to be optimal. This is called
the reference, or unpruned tree. The reference tree is the best tree that fits the
learning data set. Next, the learning data set is partitioned into a certain number of
groups called folds. The partitioning is done using stratification methods so that the
distributions of the target variable are approximately the same in the partitioned
groups. The number of groups that the rows are partitioned into is the “V” in “V-
fold cross classification.” Research has shown that little is gained by using more
than 10 partitions; so 10 is the recommended default number of partitions.

Let us assume 10 partitions are created. We combine the rows in nine of the
partitions into a new pseudo-learning data set. A test tree is constructed and sub-
sequently pruned, resulting in a set of terminal nodes for each possible tree size.
The 10% (1 out of 10 partitions) of the data that is held back from the test tree is
independent of the test tree, and it is used for an out-of-sample evaluation of the
test tree. The 10% of the data that is held back is run through the test tree and the
tree’s performance is evaluated at its various class sizes. The evaluation is usually
carried out in terms of deviance or in terms of classification errors if classification
trees are involved. Next, a different set of nine partitions is collected into a new
pseudo-learning data set. The partition being held back this time is different than
the partition that was held back for the first test tree. A second test tree is built and
its performance measures are computed using the data that was held back when
it was built. This process is repeated 10 times, building 10 separate test trees. In
each case, 90% of the data is used to build a test tree and 10% is held back for
independent testing. A different 10% is held back for each test tree.

Once the 10 test trees have been built, their out-of-sample performances, for
given tree size, are averaged. The averaged error rate for a particular tree size is
known as the cross-validation cost (or CV cost). The tree size that produces the
minimum CV cost is found. The reference tree is then pruned back to the number
of nodes matching the size that produces the minimum CV cost. Pruning is done
in a stepwise bottom-up manner, as has been explained previously, removing the
least important nodes during each pruning cycle. It is important to note that the
test trees built during the CV process are used only to find the optimal tree size.
Their structure (which may be different in each test tree) has no bearing on the
structure of the reference tree that is constructed using the full learning data set.
The reference tree that is pruned back to the optimal size determined by CV is the
best tree to use for predicting/classifying future data sets.

V-fold CV is carried out with the R command cv.tree. The graph of the CV
deviances shown in the following indicates that, for the prostate example, a tree of
size 3 is appropriate. The deviance is smallest for trees of size 3. The reference tree
that was obtained from all the data is now being pruned back to size 3. CV chooses
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capsular penetration and PSA as the deciding variables. Note the interaction: the
effect of capsular penetration on the response (log volume) depends on PSA. The
final picture shows that CART divides up the space of the explanatory variables
into rectangles, with each rectangle leading to a different prediction. The size of
the circles of the data points in the respective rectangles reflects the magnitude of
the response. This graph confirms that the tree splits are quite reasonable.

set.seed(2)
cvpst <- cv.tree(pstree, K=10)
cvpst$size
[1] 12 11 8 7 6 5 4 3 2 1
cvpst$dev
[1] 73.22055 70.18426 70.79439 70.24455 65.40004 65.30020 65.30020
[8] 64.93791 90.18312 134.09981
plot(cvpst, pch=21, bg=8, type="p", cex=1.5, ylim=c(65,100))
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pstcut <- prune.tree(pstree, best=3)

pstcut

node), split, n, deviance, yval
* denotes terminal node

1) root 97 133.40 1.3500
2) lcp < 0.261624 63 64.11 0.7925
4) lpsa < 2.30257 35 24.72 0.2787 *
5) lpsa > 2.30257 28 18.60 1.4350 *

3) lcp > 0.261624 34 13.39 2.3830 *

plot(pstcut, col=8)

text(pstcut)
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lcp < 0.261624

lpsa < 2.30257

0.2787 1.4350

2.3830

plot(prostate[,c("lcp","lpsa")],cex=0.2*exp(prostate$lcavol))

abline(v=.261624, col=4, lwd=2)

lines(x=c(-2,.261624), y=c(2.30257,2.30257), col=4, lwd=2)
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13.2 EXAMPLE 2: MOTORCYCLE ACCELERATION

The motorcycle accident data set consists of the observed accelerations on a motor-
cycle rider’s helmet at 133 different time points after a simulated impact. The data
consists of times (in milliseconds after impact) and acceleration (in g). The objec-
tive here is to predict acceleration as a function of time. The relationship between
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acceleration and time is rather complicated. The scatter plot of acceleration against
time shows that it would be quite difficult to specify a parametric regression model.
Smoothing the time series of accelerations would be one approach. One could pre-
dict the acceleration for a certain given time (say 10 ms) by the average of all accel-
erations recorded within a certain window around that time (e.g., within ±3 ms, for
a window extending from 7 to 13 ms). The smoothness of the resulting fitted curve
depends on the length of the window, with longer windows improving the smooth-
ness but in danger of missing changes of the true underlying function. We used
such an approach in Chapter 4 when we discussed nonparametric regression mod-
els. Here we do not pursue this approach (you may want to apply, as an exercise,
a local polynomial regression to this dataset), but fit a regression tree instead. The
resulting fitted curve is added to the scatter plot of acceleration against time.

library(MASS)
library(tree)
data(mcycle)
mcycle

times accel
1 2.4 0.0
2 2.6 -1.3
3 3.2 -2.7
4 3.6 0.0
.
.
.
130 55.0 -2.7
131 55.0 10.7
132 55.4 -2.7
133 57.6 10.7

plot(accel~times,data=mcycle)
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mct <- tree(accel ~ times, data=mcycle)

mct

node), split, n, deviance, yval
* denotes terminal node

1) root 133 308200.0 -25.550
2) times < 27.4 84 160500.0 -47.320

4) times < 16.5 43 18020.0 -16.480
8) times < 15.1 28 724.1 -4.357 *
9) times > 15.1 15 5494.0 -39.120 *

5) times > 16.5 41 58660.0 -79.660
10) times < 24.4 27 17040.0 -98.940
20) times < 19.5 15 9045.0 -86.310 *
21) times > 19.5 12 2616.0 -114.700 *

11) times > 24.4 14 12240.0 -42.490 *
3) times > 27.4 49 39670.0 11.780

6) times < 35 16 13300.0 29.290
12) times < 29.8 6 3900.0 10.250 *
13) times > 29.8 10 5919.0 40.720 *

7) times > 35 33 19080.0 3.291 *

plot(mct, col=8)

text(mct, cex=.75)

## we use different font size to avoid overlap

times < 27.4

times < 16.5

times < 15.1 times < 24.4

times < 19.5

times < 35
times < 29.8

–4.357 –39.120

–86.310 –114.700
–42.490

10.250 40.720 3.291

## scatter plot of data with overlay of fitted function

x=c(1:6000)

x=x/100

y1=seq(-4.357,-4.357,length.out=1510)
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y2=seq(-39.120,-39.120,length.out=140)

y3=seq(-86.31,-86.31,length.out=300)

y4=seq(-114.7,-114.7,length.out=490)

y5=seq(-42.49,-42.49,length.out=300)

y6=seq(10.25,10.25,length.out=240)

y7=seq(40.72,40.72,length.out=520)

y8=seq(3.291,3.291,length.out=2500)

y=c(y1,y2,y3,y4,y5,y6,y7,y8)

plot(accel~times,data=mcycle)

lines(y~x)
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13.3 EXAMPLE 3: FISHER IRIS DATA REVISITED

We consider the Fisher iris data that we analyzed in Section 12.3 on discriminant
analysis. Here we use the data to construct a classification tree for predicting
the species of the iris (there are three classes: setosa, versicolor, and virginica)
from their known characteristics (four characteristics are measured on each iris:
Sepal.Length, Sepal.Width, Petal.Length, and Petal.Width). This is an example of
a classification tree. The two preceding examples dealt with regression trees.

library(MASS)
library(tree)
## read in the iris data
iris

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
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. . .

. . .
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica

iristree <- tree(Species~.,data=iris)
iristree

node), split, n, deviance, yval, (yprob)
* denotes terminal node

1) root 150 329.600 setosa ( 0.33333 0.33333 0.33333 )
2) Petal.Length < 2.45 50 0.000 setosa ( 1.00000 0.00000 0.00000 ) *
3) Petal.Length > 2.45 100 138.600 versicolor ( 0.00000 0.50000 0.50000 )

6) Petal.Width < 1.75 54 33.320 versicolor ( 0.00000 0.90741 0.09259 )
12) Petal.Length < 4.95 48 9.721 versicolor ( 0.00000 0.97917 0.02083 )
24) Sepal.Length < 5.15 5 5.004 versicolor ( 0.00000 0.80000 0.20000 ) *
25) Sepal.Length > 5.15 43 0.000 versicolor ( 0.00000 1.00000 0.00000 ) *

13) Petal.Length > 4.95 6 7.638 virginica ( 0.00000 0.33333 0.66667 ) *
7) Petal.Width > 1.75 46 9.635 virginica ( 0.00000 0.02174 0.97826 )
14) Petal.Length < 4.95 6 5.407 virginica ( 0.00000 0.16667 0.83333 ) *
15) Petal.Length > 4.95 40 0.000 virginica ( 0.00000 0.00000 1.00000 ) *

plot(iristree)
plot(iristree,col=8)
text(iristree,digits=2)

Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95
Sepal.Length < 5.15

Petal.Length < 4.95

setosa

versicolor versicolor virginica
virginica virginica

summary(iristree)

Classification tree:
tree(formula = Species ~ ., data = iris)
Variables actually used in tree construction:
[1] "Petal.Length" "Petal.Width" "Sepal.Length"

www.it-ebooks.info

http://www.it-ebooks.info/


184 DECISION TREES

Number of terminal nodes: 6
Residual mean deviance: 0.1253 = 18.05 / 144
Misclassification error rate: 0.02667 = 4 / 150

Consider terminal node 13, for example, with Petal.Width < 1.75 and
Petal.Length > 4.95; four of six irises (i.e., the majority) in that group are
classified as virginica. Since this is a terminal node that could not be split any
further (as the default for the minimum number of observations in a node is 5),
the most common category, virginica, is listed as the predicted classification. Four
of 150 irises are misclassified by this tree, for a misclassification rate of 4/150, or
2.667%.

The tree with the six terminal nodes has two splits that lead to identical clas-
sifications. Nodes 24 and 25 (with a split on Sepal.Length) and nodes 14 and 15
(with a split on Petal.Length) lead to identical results, and these nodes and the
trees below them can be snipped off. This shows that we can classify an iris on
its Petal.Length and Petal.Width; the information on Sepal.Width and Sepal.Length
does not enter the classification at all. An iris with Petal.Length < 2.45 is classified
as setosa. An iris with Petal.Length > 2.45 and Petal.Width > 1.75 is classified as
virginica; so is an iris with Petal.Width < 1.75 and Petal.Length > 4.95. An iris
with with Petal.Width < 1.75 and Petal.Length between 2.45 and 4.95 is classified
as versicolor.

irissnip=snip.tree(iristree,nodes=c(7,12))

plot(irissnip)

text(irissnip)

|
Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95

setosa

versicolor virginica

virginica
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CHAPTER 14

Further Discussion on Regression
and Classification Trees, Computer
Software, and Other Useful
Classification Methods

14.1 R PACKAGES FOR TREE CONSTRUCTION

R includes several excellent packages for tree construction, of which the foremost
are tree and rpart. We have explained the package tree in the previous chapter.
Alternatively, one can use the package rpart (rpart stands for recursive partition-
ing). The methodologies and the outputs of the two routines are very similar, and so
are the solutions that are found by them. You can experiment with either package
and compare the output. The following discussion may help you understand the
slight differences in the results.

The deviance node impurity is used as the default in tree(); it coincides exactly
with the criteria that have been covered in Chapter 13: the sum of squares crite-
rion for regression trees and the classification deviance criterion for classification
trees. The parameters in the tree.control() function—mincut (minimum number
of items in a node, default 5), minsize (minimum number of items in a node
before it is being considered for a cut; default 10), and mindev (the required
change in deviance before a split is being carried out)—determine the forward
motion of growing a tree. Forward growth stops when one of these stopping
parameters is reached. The cross-validation routine cv.tree() and the pruning rou-
tine prune.tree() in the package tree use the deviance measure in the calculation
of the complexity parameters. The cost complexity tells us about the required
change in the deviance per number of cut leaves that is needed before a sub-
tree can be pruned; if the cost complexity is smaller than the change in deviance,
we simplify (i.e., prune) the tree. Note that the R package tree considers abso-
lute, not relative changes. The output of the cross-validation routine cv.tree() lists
the average cross-validation deviance for various tree sizes. One locates the size
of tree that minimizes the average deviance. But one should not always insist
on the absolute minimum. One usually scans the average deviances to find the

Data Mining and Business Analytics with R, First Edition. Johannes Ledolter.
 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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smallest tree with an average deviance that is not much larger than the minimum
deviance.

The Gini node impurity measure is used as the default in rpart(); the deviance
impurity measure is used if it is specified through parms=list(split=“information”).
The forward growth of the tree is controlled through the parameters in the
rpart.control function: minsplit (same as minsize in tree; the minimum number
of observations that must exist in a node for a split to be attempted with default
20), minbucket (same as mincut in tree; number of observations in a terminal
node with default round(minsplit/3)), and cp (the required percentage change in
node impurity before a split is being carried out with default 0.01). Forward
growth stops whenever one of the growth thresholds is reached. The complexity
parameters in rtree() are defined proportionally relative to the root node (this is
different from tree()), and they are defined in terms of the reduction in the number
of misclassifications, and not in terms of the reduction of node impurity (the
criterion used to grow the tree). Also, rpart() uses the number of misclassifications
for the calculation of the errors (which are expressed relative to the number of
errors at the root node). For given size of the tree (defined as number of splits,
which is the size of the tree minus 1), rpart() calculates the number of errors in
the training set, as well as the average and the standard deviation of the errors
from the cross-validation of a tree of that size. Again one looks for the number
of splits for which the average error from cross-validation has flattened out; it
has been recommended that one adds one standard deviation to the minimal error
and uses that as the cutoff. Also note that the cross-validation output from rpart()
may list results for #splits=0 and #splits=2, but not for #splits=1. This happens
when the reduction in the number of misclassification errors from #splits=0 to
#splits=1 is smaller than half of the reduction in the number of misclassification
errors from #splits=0 to #splits=2.

14.2 CHI-SQUARE AUTOMATIC INTERACTION DETECTION (CHAID)

CHAID or chi-square automatic interaction detection is a tree-structured classifi-
cation procedure developed by Kass (1980) and further improved by Biggs et al.
(1991). It is part of the SAS Enterprise Miner software and the SPSS data mining
software AnswerTree.

Our previous discussion emphasized that classification and regression trees are
useful for extracting structure from large multivariate data sets. These techniques
partition a data set into mutually exclusive, exhaustive subsets that “best” describe
a given response variable. Classification/regression trees are hierarchical displays
that result from a series of questions about the outcomes of the predictor variables
on each unit in the data set. At the end of the process, one knows the most likely
response value or class membership of each unit. One speaks of a classification
tree if the response variable is categorical, and of a regression tree if the response
variable is continuous.
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It is called a tree because the resulting display resembles an upside down tree,
with a root on top (the entire data set), a series of branches connecting nodes, and
leaves at the bottom. At each node (initially starting with the entire data set), a
question about one of the predictor variables is posed; the branch taken at that node
depends on the answer to this question. The order in which questions are asked
and the rules about node splits are important, as they determine the structure of the
tree. Many different algorithms have been proposed, and a detailed discussion of
algorithms that split nodes of regression and classification trees on deviances has
been given in the previous chapter. A general principle in tree construction focuses
on “node purity” at each node-splitting juncture. The tree is built by repeatedly
splitting subsets of the data to create further subsets, which are as homogeneous
as possible with respect to the response variable. CART, the popular tree-based
approach for continuous and categorical response variables that has been discussed
in the previous chapter, generates binary trees. At each stage, it splits subsets of
the data into just two child nodes of one of the predictor variables. See Breiman
et al. (1984) for further discussion.

CHAID is designed to handle categorical response and categorical predictor vari-
ables. For example, the response may be the degree of success of an organization.
Degree of success may be measured by a dichotomous (successful/not successful)
variable, or success may be given as a nominal-scaled categorical variable with
more than two outcomes. The predictor variables may be the size of the organiza-
tion (small, medium, large), whether the organization is a multinational corporation
or not, and the degree to which new management techniques are being adopted (on
an integer scale from 1 to 10). A CHAID decision tree is constructed by splitting
the units on one of the feature (explanatory) variables into two or more nodes;
splitting the data set into more than two nodes makes this technique different from
CART, which considers binary splits exclusively.

The basic idea behind CHAID is as follows. Assume a nominal response variable
with d possible outcomes and a nominal explanatory variable with c outcomes; for
the time being, consider just one explanatory variable; more explanatory variables
will be introduced shortly. The Pearson chi-square statistic is used to assess the
relationship among the two categorical variables. CHAID maximizes the Pearson
chi-square statistic between the d outcomes on the response variable and all pos-
sible groupings of the c outcomes on the explanatory variable. For an explanatory
variable with say c = 7 outcomes, the grouped table of frequencies with outcomes
1 and 2 on the explanatory variable in one group, outcomes 3 and 6 in a second
group, and outcomes 4, 5, and 7 in the third group may maximize the Pearson
chi-square statistics. Assuming that the chi-square statistic for this 3 by d table
is significant, CHAID would then split the data into these three groups. The tree
would show three leaves, with each leaf listing proportions of the d response cate-
gories calculated from the units in that particular leaf. This is straightforward, but
the search over all possible groupings of the categorical explanatory variable is
time consuming (especially as this has to be repeated for several categorical vari-
ables and for many nodes). Hence, the following “merge” strategy is suggested.

www.it-ebooks.info

http://www.it-ebooks.info/


188 USEFUL CLASSIFICATION METHODS

For a given node (at the beginning we start with all data) and for a given predic-
tor variable, the procedure merges a pair of predictor variable outcomes if there
is no statistically significant association between them and the outcomes on the
response variable; the probability value of the chi-square statistic from the 2 by
d table of frequencies is compared to a given alpha-to-merge value. The merge
step is then repeated, and the procedure finds the next pair of categories to merge,
which may now include previously merged categories. The merging step stops if the
statistical significance for the last pair of predictor categories to be merged is sig-
nificant. At that step the procedure will have found the best split for that predictor
variable.

The next step in CHAID is to select the split variable. The predictor variable
with the smallest p-value among the chi-square statistics testing the association
between the response outcomes and the optimally merged outcomes on the predictor
variables is selected for the split. That is, the predictor variable that yields the most
significant split is selected for the split. If the smallest p-value is greater than some
alpha-to-split value, then no further splits from the present node will be performed,
and the present node is a terminal node. The process is repeated at each node until
one of the stopping rules is triggered; that is, either a further split would violate
user-specified minimum data requirements, or no more significant splits can be
found.

Of course, such a search procedure may not find the split that is best at each
node. Only an exhaustive search procedure will do that. The modifications by Biggs
et al. (1991) enhance the search procedure.

14.3 ENSEMBLE METHODS: BAGGING, BOOSTING, AND RANDOM
FORESTS

Do not put all your eggs into one basket. Because if all your eggs are in one basket
and you drop the basket, you lose everything. Similarly, do not put all your trust
in a single classification or prediction method. Use the information from several
alternative methods if more than one method is available.

The advantage of aggregating several methods tends to be greatest if the meth-
ods are unrelated (independent). The advantage of aggregation disappears if the
methods are identical (i.e., strongly correlated). In forecasting, there is a large lit-
erature on the benefits of combining forecasts of quantitative information such as
sales, going back to the paper by Granger and Bates (1969). Suppose the head
of a forecasting division has two sources of forecasts for the company’s sales,
one source being the forecasts developed by the division’s econometrics group
using a time series model and the other source being the aggregated forecasts of
the regional sales managers of the company. Suppose that the forecast horizon
is h = 1. Represent the one-step-ahead forecast of the econometrics group made
at time t of the observation yt+1 by f 1

t+1 and that of the managers by f 2
t+1, and

consider the combination forecast f c
t+1 = ωf 1

t+1 + (1 − ω) f 2
t+1. Assume that either

forecast is unbiased (i.e., E (yt+1 − f 1
t+1) = E (yt+1 − f 2

t+1) = 0) and assume that
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the one-step-ahead forecast errors have variances σ11 and σ22, and covariance σ12.
It is straightforward to show that the combined forecast is also unbiased, and that
its variance is given by E (yt+1 − f c

t+1)
2 = ω2σ11 + (1 − ω)2σ22 + 2ω(1 − ω)σ12.

This variance is smallest for ω = (σ22 − σ12)/(σ11 + σ22 − 2σ12). We can show
this by taking the first derivative with respect to ω and setting it equal to zero.
For forecasts with the same precision (σ 2 = σ11 = σ22), the individual forecasts
should be averaged (ω = 0.5), and this is true for any value of the covariance σ12.
Then the forecast error of the resulting combined (averaged) forecast has variance
E (yt+1 − f c

t+1)
2 = σ 2(1 + ρ)/2 ≤ σ 2, which is never larger than the variance of

an individual method. The benefit of averaging is actually largest if the correlation
ρ = σ12/σ

2 between the two unbiased forecast errors is negative, as then the two
errors compensate each other.

The same idea can be applied to the classification of a new case into one of
m ≥ 2 different outcome categories. Assume that results from an ensemble of k
different base classifiers are available. The ensemble returns a class prediction that
is based on the votes of the base classifiers. The combined (ensemble) classifier is
given by the outcome that occurs most often. An ensemble classifier tends to be
more accurate than its components. Each base classifier in a binary classification
may make mistakes, but the ensemble classifier will lead to an error only if over
half of the base classifiers are incorrect. Ensemble methods work well if there is
little correlation among the classifiers and if each classifier is better than random
guessing. Combining classifiers that are all alike brings little benefit. Combining
classifiers that resemble random guessing does not lead to an advantage either,
as the distribution of the classifiers of the ensemble is again uniform across the
possible outcome groups.

There are various ways of creating ensembles. The classifiers could come from
different methods, such as logistic regression, nearest neighbor methods, classifi-
cation trees, naı̈ve Bayesian methods, or discriminant methods. Or, the classifiers
can come from different subsets of the training part of the data. Bootstrap aggrega-
tion, or bagging, combines classifiers across different subsets of the training data.
Assume that the training data set consists of d cases, each case being described
by its attributes and the true classification. Bagging selects a new training set of
d cases by selecting d of the cases through sampling with replacement (a certain
case could come up multiple times in the new training set), constructs the model
from this new training set, and uses the fitted model to classify the new case. This
process is repeated k times, resulting in k classifications of the new test case. The
ensemble classifier assigns to the new test case the most frequent classification. The
bootstrap (or bagged) classifier is often considerably better than a single classifier
that is derived from the original training set. It certainly will not be much worse,
and it has been shown to be robust to overfitting and to noisy data.

Boosting is similar, except that there the ensemble classifier assigns weights
to the individual base classifiers when combining them. Adaptive boosting, for
example, works as follows. We start, as in bagging, constructing a new train-
ing set of d cases from the original training set by selecting d of the cases
through sampling with replacement, constructing the model (classifier) from this
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new training set, and using the fitted model to classify the new case. In the begin-
ning, each case of the original training set is assigned weight 1/d . But now, we
assess the internal performance of the resulting classifier on the new training set
that has been used for its construction, and we revise the weights for drawing
the next training sample. If a case in the training sample has been classified
incorrectly, we increase its weight; if the case has been classified correctly, we
reduce its weight. The revised weights reflect how difficult it is to classify each
case. The revised weights are used to draw the next bootstrap sample, construct a
new classifier, obtain the classification of the test case, assess the internal perfor-
mance of the classifier, and revise the weights for the draw of the next training
sample, and so on. Note that each new training sample increases the focus on
misclassified cases. The boosting strategy tends to build a series of classifiers that
complement each other. Once we have obtained k training sets and k classifiers,
adaptive boosting combines the results, and it does so by assigning a weight to
each classifier’s vote that reflects how well this classifier has performed internally.
Strategies for revising the weights from one draw to the next and for weighting
the votes of the classifiers are discussed in the literature, and programs for imple-
menting this approach are available. In general, boosting tends to increase the
accuracy.

The randomForest method is another way to combine information across an
ensemble. Assume that each of the k classifiers in the ensemble is a decision
tree for classifying a new element into one of m possible outcome groups. At
each node, an individual decision tree determines the split on the basis of a
smaller, random selection of attributes, and not from the set of all attributes. Each
tree in the forest of trees (hence the method’s name) then votes on the classi-
fication of a new item, and the most popular class is returned as the ensemble
solution.

Random attribute selection can be combined with bagging. There a training
sample of the d elements from the initial training set of d elements is selected with
replacement. At each node of each tree, a randomly selected set of A attributes
(selected from the usually much larger set of all attributes) is used to determine
the split. Each tree is grown to maximum size and is not pruned. Each tree votes,
and the most popular class becomes the ensemble classification. Random forests
formed with random attribute input selection are referred to as Forest-RI. Several
modifications of this basic strategy have been developed, and computer software
for their implementation is available.

When constructing a single tree one notices quite often that there is little dif-
ference between choosing one splitting variable or several others. One or more
attribute variables usually have the same ability to partition the training data set
into homogeneous groups, and in such cases, luck or small changes in the training
data set determine whether the algorithm prefers one splitting variable over the
others. Random forest techniques tend to do better. The randomness of variable
selection delivers robustness to noise and the presence of attribute variables that
have weak relationships with the target variable, to outliers, and to small changes
in the training data set. These conditions usually have little impact on the final
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decisions made by the ensemble classifier. A random forest technique also handles
underrepresented classes quite well. In addition, it has computational efficiencies
as it restricts the search.

Software for carrying out this methodology is available in R; the package ran-
domForest a good place to start. Typically, one constructs 500 random trees, with
each tree constructed on training data that has been randomly selected from the
original training data set (say 70% of the complete data). Randomization enters
twice: through the randomly selected training data set (each tree uses different
training data) and through the random selection of a few of the attributes (four or
so) at each of the node splits. These two random selections make random forests
robust to noisy observations and weak attributes. The randomForest() command,
through its control parameter replace=TRUE/FALSE, achieves the randomization
of the tree-specific training sets through two very similar sampling procedures.
Under replace=TRUE, the training set is sampled with replacement from the num-
ber of cases that have been established as the training set; typically the sample size
is the same as the size of the training set. Because of sampling with replacement,
not all elements of the original training set are selected (on average, roughly 1/3
of the elements are not chosen) and a few elements are selected more than once.
Under replace=FALSE, the sampling is without replacement, and in this case,
the program samples 63.2% of the elements from the training set. Again, roughly
one-third of the cases are not selected.

The randomForest package evaluates the classification procedure internally by
computing classification errors on only those elements of the training set that have
been left out of the training data for at least one of the constructed trees. Ele-
ments that are included in the training data for all of the constructed trees are not
part of this evaluation. The program refers to the resulting error as the “out-of-
bag” misclassification error; the expression “out of bag” comes from the bootstrap
aggregation or bagging of the training data. Misclassification error rates for evalu-
ation and test data sets can also be obtained, and they tend to give a more accurate
picture of the out-of-sample performance.

The randomForest package also allows the user to specify the number of ele-
ments that should be included in each tree’s training data set (typically the sample
size is the same as the size of the training set). Furthermore, the program allows
the user to specify the number of elements that should come from each of the out-
come groups; for example, the statement sampsize=c(30,30) forces the selection
of 30 samples from each of two groups. This can be an advantage in situations
where the groups are not balanced, and one group is considerably more prevalent
than the other. Without the sampsize argument, the program selects the cases from
the training set at random, and trees constructed on unbalanced training data will
have difficulties identifying members of the rare group. By forcing the program to
select the same number of training elements from each strata, the trees are given a
better chance to identify the rare group. The randomForest software package also
includes several ways of assessing the importance of the attributes. The simplest
way to determine importance is to count the number of trees in which a certain
attribute is present for making a decision.
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14.4 SUPPORT VECTOR MACHINES (SVM)

Support vector machines (SVM) comprise another very general group of classifi-
cation methods, and they cover both linear and nonlinear classifiers. Assume that
we want to classify two-dimensional training data into two groups. The informa-
tion we have available can be shown through a scatter plot of the two attributes,
and the plotting positions can be represented with two different labels or colors
that identify the two classes. Suppose we are fortunate enough that the data are
linearly separable, which means that a straight line through the data set separates
the two classes exactly. Quite often there are several lines with different intercepts
and slopes that can achieve the separation, and the objective is to find the line that
achieves the best possible one. What do we mean by the best separation? Find a
separation line and add two parallel lines of equal distance to that line such that
each parallel line passes through the data point that is closest to the line of separa-
tion. The distance between the two parallel lines, also called the margin, measures
how good the separation really is. If the distance between these two parallel lines
is large, then the two groups are far apart and we have found an excellent clas-
sifier. The objective is to find the classifier with the best margin of separation.
In two-dimensional space where data can be graphed on a scatter plot, it is fairly
straightforward to find the separation line, the two parallel lines, and the margin. In
high dimensional space, with more than two attributes and more than two groups,
this becomes a complicated problem. Nevertheless mathematical tools are readily
available to find the hyperplane that separates the groups with the largest margin.
SVM achieves this by finding “support vectors” that identify the data points on the
hyperplanes with the largest margins.

But, what if we are not so fortunate and our data is not linearly separable?
Then SVM methods transform the data into a higher dimensional space in which
such complete separation is possible. With an appropriate nonlinear mapping into
a sufficiently high dimension, such separation is always possible, and the methods
that we outlined for linearly separable data can be applied to the transforms. SVM
tries several nonlinear transformations, including the one that considers powers and
cross products of the attributes.

SVMs are useful, and programs are available in R. However, in this text, we
do not discuss SVM in detail, as its full explanation requires advanced tools from
mathematical optimization. For reference, you may want to look at the article
“Support vector machines in R,” by Karatzoglou et al. (2006), the command ksvm()
in the R package kernlab, and the command svm() in the R package e1071.

14.5 NEURAL NETWORKS

Neural networks comprise yet another group of nonlinear procedures for prediction
and classification. Neural networks are computational analogs of the processes that
describe the working of neurons. Neural nets consist of connected input and output
layers, each containing numerous units, where the connections among the units of
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the layers have weights associated with them. A multilayer neural network consists
of an input layer of distinct units (usually input units represent the attributes of
the case that needs to be classified), one or more hidden layers, and an output
layer with several units that represent the class that needs to be predicted. Each
layer is made up of several units. The inputs from the units of the first layer are
weighted and fed simultaneously to a second layer of neuron-like units, known as
the hidden layer. Each of its units takes as its input a weighted sum of the outputs
of the previous layer and applies a nonlinear activation function to determine its
output. The activation function is usually a logistic function that transforms the
output to a number that is between 0 and 1; for this reason, it is often referred to
as the squashing function. The output units may already be the actual output of the
system (in which case we talk about a single hidden layer), or the outputs of the
first hidden layer can be fed as inputs to another hidden layer (in which case we
have two hidden layers), and so on if additional hidden layers are involved.

One needs to decide on the number of hidden layers and the number of units
in the various layers, as well as the weights that connect the inputs and outputs of
these layers. Neural nets are very general, and because of the nonlinear activation
functions neural nets are able to approximate most nonlinear functional relation-
ships very well. Of course, the weights in these systems have to be estimated by
training the system on actual data. The iterative method of back-propagation can be
used to determine the empirical weights that lead to the best fit on a given training
sample. For that, one needs to specify a learning parameter that controls the speed
of convergence of this iterative estimation method.

Neural nets are very general and can approximate complicated relationships.
But they also come with disadvantages. One disadvantage of neural nets is that the
approximating models relating inputs and outputs are purely “black box” models,
and they provide very little insight into what these models really do. Also, the
user of neural nets must make many modeling assumptions, such as the number of
hidden layers and the number of units in each hidden layer, and usually there is
little guidance on how to do this. It takes considerable experience to find the most
appropriate representation. Furthermore, back-propagation can be quite slow if the
learning constant is not chosen correctly.

In this chapter, we do not emphasize neural networks. Software for carrying
out this methodology is available in R; the packages nnet and neuralnet are good
places to start from.

14.6 THE R PACKAGE RATTLE: A USEFUL GRAPHICAL USER
INTERFACE FOR DATA MINING

A graphical user interface (GUI) allows people to interact with software in more
ways than just by typing text. The Microsoft Office products are well-known GUIs.
Take Microsoft Excel, for example, which allows users to simply point a cursor at
a certain icon and click. Excel and other spreadsheet programs, such as Minitab
and SPSS for statistical applications, have become popular because they rely on a
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simple “point and click” interface. R, on the other hand, is not that user-friendly
because one must type commands into an R console. However, more and more R
GUIs are being developed. Rcmdr (R commander) is one of them, and it provides
an excellent GUI especially for statistical analysis. Typing onto the R console the
statement “library(Rcmdr)” opens up a graphical interface, and from there numerous
statistical functions are just a mouse-click away.

The R library rattle, developed by Williams and discussed in his book “Data
Mining with Rattle and R: the Art of Excavating Data for Knowledge Discovery”
(Williams, 2011), provides a very useful GUI to important data-mining libraries
in R. Typing onto the R console the statement “library(rattle)” and then “rattle()”
into the next line opens up a graphical interface to R. Once the data is loaded
into rattle, the analysis can be carried out by entering answers to simple queries
and mouse clicks. This makes the R analysis simple and easy, as data mining is
now carried out in a spreadsheet environment that is familiar to users of programs
such as Excel or Minitab. By clicking on various window tabs, the user of rattle
can execute data-mining tasks such as constructing regression/classification trees
discussed in this and the previous chapter, clustering (forthcoming Chapter 15),
and association analysis (forthcoming Chapter 16), and can do so without having
to write out detailed R instructions. In addition, rattle makes it convenient to pre-
process the data. Once the data has been loaded into rattle, it is easy to specify the
data type and declare the data as continuous or categorical (rattle infers the data
type automatically; while it is actually very good at this, the user can always over-
write its selection). It is also easy to get information on missing data and identify
outliers, and simple methods for adjusting outliers and imputing missing obser-
vations are available. Rattle provides useful graphical displays for one or more
variables and calculates standard summary statistics such as means, standard devi-
ations, and correlation coefficients, and it does so without the user having to write
out R instructions. Rattle reduces much of the programming pain, as it becomes
unnecessary to write out R instructions. The user does not need to remember the
R code; information is simply entered into various windows and the information
is being translated into R code. An added benefit of rattle is that the generated
code is visible to the user, who then can change the code for more sophisticated
analyses. Experiment with this R package by loading the library rattle, and start it
by typing rattle().

Rattle makes it very easy to split the data into training, evaluation, and test data
sets, and to evaluate the models that are fitted to one set of data on other data
sets. The evaluation of the predictive performance of a model on the very same
data that has been used for its estimation is most likely too optimistic. Just think
of regression models that can be made to fit better and better just by increasing
the number of estimated coefficients, but at the expense of their forecasting perfor-
mance. It is important that the predictive performance of models and methods is
being assessed on new observations that are independent of those that were used at
the model estimation/fitting stage. Typically, one divides the data set into two, or
sometimes three nonoverlapping parts: the training, evaluation, and test data sets.
The training data set is used to build and estimate the model, and the test data set
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is used to evaluate the out-of-sample performance of the model (which can result
in a prediction of a response variable or a classification of a new case). Some-
times a third data set, called the evaluation data set, is present. Consider LASSO
regression for predicting the outcome of a certain response. The implementation of
LASSO regression for prediction requires the knowledge of a penalty parameter λ,
which usually is determined through cross-validation on an independent data set.
This is where the evaluation data set comes in. For each of several choices of λ,
penalized regression estimates are obtained from the training set; these estimates
are then used to determine the predictions for cases in the evaluation data set. The
resulting prediction errors are calculated, and the penalty parameter is estimated
by minimizing the sum of the squared prediction errors from the evaluation data
set. Once the penalty parameter is found, one can use the LASSO estimates from
the training data, using the penalty that was found on the evaluation data set, to
evaluate the model performance on the test data set. Rattle has easy ways of split-
ting the data into these three parts, and they use splits, such as 70/15/15. In certain
other modeling situations, just two independent data sets are needed: the training
data set and the test data set. Then we use the terms “test” and “evaluation” data
sets interchangeably to refer to the same data set. With just two data sets, it is
common to split the complete data set into two equal parts (50/50 split).

Rattle covers several important data-mining tasks, but not all methods discussed
in this book are covered; it does not address regression and logistic regression,
LASSO and false discovery rates, nearest neighbor methods, and principal compo-
nents and partial least squares, network analysis and the analysis of text information
(topics that are being discussed in subsequent chapters).
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CHAPTER 15

Clustering

15.1 k-MEANS CLUSTERING

We are given observations on n units, (x1, x2, . . . , xn), with the observation on unit
i representing a p-dimensional vector of features (attributes). The k -means cluster-
ing method partitions the n units into k ≤ n distinct clusters, S = {S1, S2, . . . , Sk },
so as to minimize the within-cluster sum of squares,

arg min
S

k∑
j=1

∑
xi ∈Sj

‖xi − mj ‖2.

The cluster mean mj is the mean vector of the p attributes averaged over all units
in cluster Sj . The norm ‖x − m‖2 = ∑p

r=1(xr − mr )
2 sums the squared differences

over the p attributes; it represents the (square of the) Euclidian distance between the
p-dimensional vectors x and m . The norm assumes equal scales of the p attributes
and it does not incorporate correlations among the features.

The number of clusters k must be given. Clustering is purely descriptive. Clus-
tering groups the items according to how similar they are, and it does so in an
unguided (unsupervised) manner. If we had a training set with known clusters, we
could use a nearest neighbor analysis (discussed in Chapter 9) to assign the units of
the evaluation (hold-out; test) data set to the known clusters; but here we assume
that such training sets are not available.

The question is how the minimization should be carried out. While this is a
difficult and time-intensive problem (it is known as an NP hard problem), several
good heuristic algorithms for its solution do exist. The most common algorithms
use an iterative refinement technique; see Hartigan (1975), and Hartigan and Wong
(1979).

Given an initial set of k cluster means m1
1, m1

2, . . . , m1
k (details of the initial-

ization are described below), the algorithm proceeds by alternating between the
following two steps:
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An assignment step. We run through all units and assign each unit to the cluster
with the closest mean. This creates the j th cluster assignment at iteration
time (t):

S (t)
j =

{
xi : ‖xi − m(t)

j ‖ ≤ ‖xi − m(t)
j∗ ‖, for all j∗ = 1, 2, . . . , k

}
.

An update step. We calculate k new cluster means as the centroids of the units
in the clusters that have been created in the assignment step,

m(t+1)
j = 1

nu(S (t)
j )

∑
xi ∈S (t)

j

xi .

The algorithm has converged when the assignments no longer change.

Commonly Used Initialization Methods

• Randomly choose k units from the data set and use these as the initial cluster
means;

• Randomly assign one of the k clusters to each unit and then proceed to the
update step, computing the initial means as the centroids of the clusters’
randomly assigned units. In general, this random partition method is thought
to be preferable.

We use the function k-means in the R package stats; this algorithm is known
to be fast and reliable. But as with all heuristic algorithms, there is no guarantee
that it converges to the global optimum; its final result may depend on how the
algorithm has been started. The parameter nstart in the function k-means can be
used to reduce the sensitivity of the algorithm to the random selection of the initial
clusters/cluster means. Note that the random initialization may result in slightly
different cluster assignments if the same function k-means is executed repeatedly.
However, this change in the cluster assignment should not cause undue worry, as
in such cases the solutions are fairly close and most likely any of the proposed
clustering assignments can be justified by the data. Also note that the cluster labels
(1, 2, and so on) usually change from one run to the other. This only has to do
with the labeling of the clusters, but not with the assignment of the elements to the
clusters.

EXAMPLE 15.1 EUROPEAN PROTEIN CONSUMPTION

For our first example, we consider 25 European countries (n = 25 units) and their
protein intakes (in percent) from nine major food sources (p = 9). The data are
listed below. For example, Austria gets 8.9% of its protein from red meat, 19.9%
from milk, and so on. It is of interest to learn whether the 25 countries can be
separated into a smaller number of clusters. It may well be that Mediterranean
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countries get their protein intake from certain food categories, which are different
from the food staples that are favored by North European and German-speaking
countries.

The data, originally reported by Weber (1973), can be found in Hand et al.
(1994, p. 297).

Red White
Country Meat Meat Eggs Milk Fish Cereals Starch Nuts Fr&Veg

Albania 10.1 1.4 0.5 8.9 0.2 42.3 0.6 5.5 1.7
Austria 8.9 14 4.3 19.9 2.1 28 3.6 1.3 4.3
Belgium 13.5 9.3 4.1 17.5 4.5 26.6 5.7 2.1 4
Bulgaria 7.8 6 1.6 8.3 1.2 56.7 1.1 3.7 4.2
Czechoslovakia 9.7 11.4 2.8 12.5 2 34.3 5 1.1 4
Denmark 10.6 10.8 3.7 25 9.9 21.9 4.8 0.7 2.4
E Germany 8.4 11.6 3.7 11.1 5.4 24.6 6.5 0.8 3.6
Finland 9.5 4.9 2.7 33.7 5.8 26.3 5.1 1 1.4
France 18 9.9 3.3 19.5 5.7 28.1 4.8 2.4 6.5
Greece 10.2 3 2.8 17.6 5.9 41.7 2.2 7.8 6.5
Hungary 5.3 12.4 2.9 9.7 0.3 40.1 4 5.4 4.2
Ireland 13.9 10 4.7 25.8 2.2 24 6.2 1.6 2.9
Italy 9 5.1 2.9 13.7 3.4 36.8 2.1 4.3 6.7
Netherlands 9.5 13.6 3.6 23.4 2.5 22.4 4.2 1.8 3.7
Norway 9.4 4.7 2.7 23.3 9.7 23 4.6 1.6 2.7
Poland 6.9 10.2 2.7 19.3 3 36.1 5.9 2 6.6
Portugal 6.2 3.7 1.1 4.9 14.2 27 5.9 4.7 7.9
Romania 6.2 6.3 1.5 11.1 1 49.6 3.1 5.3 2.8
Spain 7.1 3.4 3.1 8.6 7 29.2 5.7 5.9 7.2
Sweden 9.9 7.8 3.5 24.7 7.5 19.5 3.7 1.4 2
Switzerland 13.1 10.1 3.1 23.8 2.3 25.6 2.8 2.4 4.9
United Kingdom 17.4 5.7 4.7 20.6 4.3 24.3 4.7 3.4 3.3
USSR 9.3 4.6 2.1 16.6 3 43.6 6.4 3.4 2.9
W Germany 11.4 12.5 4.1 18.8 3.4 18.6 5.2 1.5 3.8
Yugoslavia 4.4 5 1.2 9.5 0.6 55.9 3 5.7 3.2

We start by clustering on the first two features, protein intake from red and
white meat. With just two features and in two dimensions it is easy to get an
appreciation for what clustering is trying to achieve. We program the software to
cluster the 25 countries into three groups. The following scatter plot of protein
intake from white meat against protein intake from red meat labels the k-means
cluster associations of the countries in color. This gives us a good visualization
of the three clusters. Clusters are formed by minimizing the Euclidean distance to
the respective cluster centroids. The graph indicates that there exist several other
reasonable cluster assignments that would not be much worse.

### *** European Protein Consumption, in grams/person-day *** ###

## read in the data
food <- read.csv("C:/DataMining/Data/protein.csv")
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food[1:3,]

Country RedMeat WhiteMeat Eggs Milk Fish Cereals Starch Nuts Fr.Veg
1 Albania 10.1 1.4 0.5 8.9 0.2 42.3 0.6 5.5 1.7
2 Austria 8.9 14.0 4.3 19.9 2.1 28.0 3.6 1.3 4.3
3 Belgium 13.5 9.3 4.1 17.5 4.5 26.6 5.7 2.1 4.0

## first, clustering on just Red and White meat (p=2) and k=3
## clusters
set.seed(1) ## to fix the random starting clusters
grpMeat <- kmeans(food[,c("WhiteMeat","RedMeat")], centers=3,

+ nstart=10)
grpMeat
## list of cluster assignments
o=order(grpMeat$cluster)
data.frame(food$Country[o],grpMeat$cluster[o])

food.Country.o. grpMeat.cluster.o.
1 Albania 1
2 Bulgaria 1
3 Finland 1
4 Greece 1
5 Italy 1
6 Norway 1
7 Portugal 1
8 Romania 1
9 Spain 1
10 Sweden 1
11 USSR 1
12 Yugoslavia 1
13 Belgium 2
14 France 2
15 Ireland 2
16 Switzerland 2
17 UK 2
18 Austria 3
19 Czechoslovakia 3
20 Denmark 3
21 E Germany 3
22 Hungary 3
23 Netherlands 3
24 Poland 3
25 W Germany 3

## plotting cluster assignments on Red and White meat scatter plot
plot(food$Red, food$White, type="n", xlim=c(3,19), xlab="Red Meat",

+ ylab="White Meat")
text(x=food$Red, y=food$White, labels=food$Country,

+ col=grpMeat$cluster+1)

Next, we cluster on all nine protein groups and prepare the program to create
seven clusters. The resulting clusters, shown in color on a scatter plot of white
meat against red meat (any other pair of features could be selected), actually make
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a lot of sense. Countries in close geographic proximity tend to be clustered into
the same group.
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## same analysis, but now with clustering on all

## protein groups

## change the number of clusters to 7

set.seed(1)

grpProtein <- kmeans(food[,-1], centers=7, nstart=10)

o=order(grpProtein$cluster)

data.frame(food$Country[o],grpProtein$cluster[o])

food.Country.o. grpProtein.cluster.o.
1 Portugal 1
2 Spain 1
3 Denmark 2
4 Finland 2
5 Norway 2
6 Sweden 2
7 Austria 3
8 E Germany 3
9 Netherlands 3
10 W Germany 3
11 Czechoslovakia 4
12 Hungary 4
13 Poland 4
14 Belgium 5
15 France 5
16 Ireland 5
17 Switzerland 5
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18 UK 5
19 Bulgaria 6
20 Romania 6
21 Yugoslavia 6
22 Albania 7
23 Greece 7
24 Italy 7
25 USSR 7
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EXAMPLE 15.2 MONTHLY US UNEMPLOYMENT RATES

Our second example analyzes monthly seasonally adjusted unemployment rates
covering the period January 1976 through August 2010 for the 50 US states
(n = 50). In the figure shown later, we overlay the time series plots of three
states; Iowa (green), New York (red), and California (black). The objective is
to cluster states into groups that are alike. Here each state is characterized by a
feature vector of very large dimension (p = 416), with its components represent-
ing the 416 monthly observations. Assume, for illustration, that New York and
California form a cluster. Calculate the 416 monthly averages (of two observa-
tions each); this vector of averages is the centroid for that cluster. The sum of
the squared distances from the centroid of this cluster (for New York and Cali-
fornia there are 2(416) = 832 such distances) expresses the within-cluster sum of
squares.

## read the data; series are stored column-wise with labels in first
## row
raw <- read.csv("C:/DataMining/Data/unempstates.csv")
raw[1:3,]
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AL AK AZ AR CA CO CT DE FL GA HI ID IL IN IA KS KY LA ME
1 6.4 7.1 10.5 7.3 9.3 5.8 9.4 7.7 10.0 8.3 9.9 5.5 6.4 6.9 4.2 4.3 5.7 6.2 8.8
2 6.3 7.0 10.3 7.2 9.1 5.7 9.3 7.8 9.8 8.2 9.8 5.4 6.4 6.6 4.2 4.2 5.6 6.2 8.6
3 6.1 7.0 10.0 7.1 9.0 5.6 9.2 7.9 9.5 8.1 9.6 5.4 6.4 6.4 4.1 4.2 5.5 6.2 8.5

MD MA MI MN MS MO MT NE NV NH NJ NM NY NC ND OH OK OR
1 6.9 11.1 10.0 6.2 7.0 5.8 5.8 3.6 9.8 7.2 10.5 8.9 10.2 6.7 3.2 8.3 6.4 10.1
2 6.7 10.9 9.9 6.0 6.8 5.8 5.7 3.5 9.5 7.1 10.4 8.8 10.2 6.5 3.3 8.2 6.3 9.8
3 6.6 10.6 9.8 5.8 6.6 5.8 5.7 3.3 9.3 7.0 10.4 8.7 10.1 6.3 3.3 8.0 6.1 9.5

PA RI SC SD TN TX UT VT VA WA WV WI WY
1 8.1 7.8 7.6 3.6 5.9 5.9 6.1 8.8 6.2 8.7 8.3 5.9 4.2
2 8.1 7.8 7.4 3.5 5.9 5.9 5.9 8.7 6.1 8.7 8.1 5.7 4.1
3 8.0 7.9 7.2 3.4 5.9 5.8 5.7 8.6 5.9 8.7 7.9 5.6 4.0

## time sequence plots of three series
plot(raw[,5],type="l",ylim=c(0,12),xlab="month",

+ ylab="unemployment rate") ## CA
points(raw[,32],type="l", cex = .5, col = "dark red") ## New York
points(raw[,15],type="l", cex = .5, col = "dark green") ## Iowa
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The outcome of k-means clustering for different number of clusters is shown as
follows:

## transpose the data
## then we have 50 rows (states) and 416 columns (time periods)
rawt=matrix(nrow=50,ncol=416)
rawt=t(raw)
rawt[1:3,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
AL 6.4 6.3 6.1 6.0 6.0 6.0 6.2 6.3 6.4 6.5 6.6 6.7 6.9 7.0
AK 7.1 7.0 7.0 7.0 7.0 7.1 7.4 7.7 8.0 8.3 8.5 8.7 8.9 9.1
AZ 10.5 10.3 10.0 9.8 9.6 9.5 9.5 9.5 9.6 9.6 9.6 9.5 9.4 9.3
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[,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
AL 7.1 7.2 7.2 7.1 6.9 6.7 6.5 6.3 6.1 6.0 5.9 5.8
AK 9.3 9.4 9.6 9.7 9.8 9.8 9.9 10.0 10.2 10.4 10.7 10.8
AZ 9.1 8.9 8.6 8.4 8.3 8.2 8.1 7.9 7.6 7.3 7.0 6.7

## k-means clustering in 416 dimensions
set.seed(1)
grpunemp2 <- kmeans(rawt, centers=2, nstart=10)
sort(grpunemp2$cluster)

CO CT DE GA HI IA KS ME MD MA MN MT NE NH NC ND OK SD UT VT VA WI WY AL AK AZ
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

AR CA FL ID IL IN KY LA MI MS MO NV NJ NM NY OH OR PA RI SC TN TX WA WV
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

grpunemp3 <- kmeans(rawt, centers=3, nstart=10)
sort(grpunemp3$cluster)

AL AK AR IL KY LA MI MS NM OH OR TN WA WV CO HI IA KS MD MN NE NH ND OK SD UT
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

VT VA WY AZ CA CT DE FL GA ID IN ME MA MO MT NV NJ NY NC PA RI SC TX WI
2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

grpunemp4 <- kmeans(rawt, centers=4, nstart=10)
sort(grpunemp4$cluster)

AK LA MI MS WV CO HI IA KS MN NE NH ND OK SD UT VT VA WY AZ CT DE FL GA ME MD
1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

MA NJ NY NC RI AL AR CA ID IL IN KY MO MT NV NM OH OR PA SC TN TX WA WI
3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

grpunemp5 <- kmeans(rawt, centers=5, nstart=10)
sort(grpunemp5$cluster)

CO ID IA MN MO MT OK TX UT WI WY AZ CT DE FL GA ME MD MA NJ NY NC RI AK LA MI
1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3

MS WV AL AR CA IL IN KY NV NM OH OR PA SC TN WA HI KS NE NH ND SD VT VA
3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5

Other ways of setting up the clustering are possible. For example, we can cal-
culate summary statistics for each state, such as the average and the standard
deviation of the unemployment rates, and then use these two calculated features
of the monthly unemployment rates as the attributes for clustering. The data file
unemp.csv includes the average and the standard deviation for each state. The results
for three clusters are indicated on the scatter plot of the standard deviations against
the means. In general, a state’s standard deviation in unemployment increases with
its level. We see groups of states with low unemployment and low variability,
and states with high unemployment and high variability. Note that this approach
to clustering does not incorporate differences or similarities in the state-specific
time-patterns of the unemployment rates.

## data set unemp.csv with means and standard deviations for

## each state

## k-means clustering on 2 dimensions (mean, stddev)
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unemp <- read.csv("C:/DataMining/Data/unemp.csv")

unemp[1:3,]

state mean stddev
1 AL 6.644952 2.527530
2 AK 8.033173 1.464966
3 AZ 6.120673 1.743672

set.seed(1)

grpunemp <- kmeans(unemp[,c("mean","stddev")], centers=3,

+ nstart=10)

## list of cluster assignments

o=order(grpunemp$cluster)

data.frame(unemp$state[o],grpunemp$cluster[o])

plot(unemp$mean,unemp$stddev,type="n",xlab="mean",

+ ylab="stddev")

text(x=unemp$mean,y=unemp$stddev,labels=unemp$state,

+ col=grpunemp$cluster+1)
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15.2 ANOTHER WAY TO LOOK AT CLUSTERING: APPLYING
THE EXPECTATION-MAXIMIZATION (EM) ALGORITHM TO MIXTURES
OF NORMAL DISTRIBUTIONS

The k-means algorithm is a variant of the generalized expectation-maximization
algorithm. The “assignment” step in the k-means clustering algorithm represents
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the expectation step, while the “update” step represents the maximization step.
Each unit is assigned a variable that determines its allocation into a certain cluster.
The assignment variable can be thought of as a latent variable z . The k-means
clustering algorithm makes a unique “hard” choice for this latent variable; one unit
may be assigned to cluster 2, while another unit to cluster 5.

We can improve on the approach that makes a hard choice on each unit and
obtains cluster centroids by averaging over the units that are associated with a
particular value of z . Instead, we can determine for each unit probabilities for
the various cluster associations (i.e., probabilities for the various outcomes of z )
and then use these probabilities to estimate the group centroids from a weighted
average over the entire set of units. The resulting algorithm, referred to as a soft
clustering approach, is the type of algorithm normally associated with expecta-
tion maximization (EM). The probabilities used to compute the weighted averages
across the units are called the soft counts (probability weights) as compared to the
hard counts (0/1) that are used in the k-means algorithm. The probabilities com-
puted for z are posterior probabilities and they are computed in the E-step. The
M-step uses these probabilities to update the model parameters.

An EM algorithm that works on mixtures of normal distributions is described
next. It makes a “soft” choice for the latent variable, and furthermore, allows
for correlation among the features. Note that k-means clustering uses a spherical
distance measure, and implicitly assumes equal importance of the features and inde-
pendence among the features. The features can be scaled such that they have equal
standard deviations, and the k-means algorithm can be applied to the standardized
data. While this gets around problems of scale and avoids giving too much influ-
ence to features with large variability it will not adjust the analysis for possible
correlation among the features.

Let x = (x1, x2, . . . , xn) be a sample of independent observations from a mixture
of two multivariate normal distributions of dimension p. The extension to 3 or more
groups is fairly straightforward and is omitted here. Let z = (z1, z2, . . . , zn) be the
latent variables, with each zi taking on two outcomes (1 and 2) that determine the
distribution from which the observations are drawn. We assume p-variate normal
distributions

xi |(zi = 1) ∼ Np(µ1, �1) and xi |(zi = 2) ∼ Np(µ2, �2),

and probabilities

P(zi = 1) = τ1 and P(zi = 2) = τ2 = 1 − τ1.

The aim is to estimate the unknown parameters: the “mixing” probability τ1 = τ

for the two normal distributions, and the means (µ1, µ2) and covariance matrices
(�1, �2) of the two normal distributions; that is,

θ = (τ , µ1, �1, µ2, �2).
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The likelihood function is

L(θ; x , z ) = P(x , z |θ) =
n∏

i=1

2∑
j=1

I (zi = j )τj f (xi ;µj , �j ),

where I is an indicator function and f is the probability density function of the
multivariate normal distribution. The likelihood function can be re-written in expo-
nential family form,

L(θ; x , z ) = exp




n∑
i=1

2∑
j=1

I
(
zi = j

) [
log τj − 0.5 log |�j |

−0.5(xi − µj )
′�−1

j

(
xi − µj

) −
(n

2

)
log(2π)

]}
.

Since the likelihood function includes the unknown latent variables z = (z1,
z2, . . . , zn), we use the iterative EM algorithm to estimate the parameters θ =
(τ , µ1, �1, µ2, �2).

15.2.1 E-Step

Given a current estimate of the parameters θ(t), the conditional distribution of zi
is determined by Bayes theorem,

T (t)
j ,i = P(zi = j |xi ; θ(t)) = τ

(t)
j f (xi ;µ

(t)
j , �(t)

j )

τ
(t)
1 f (xi ;µ

(t)
1 , �(t)

1 ) + τ
(t)
2 f (xi ;µ

(t)
2 , �(t)

2 )
; j = 1, 2

This discrete conditional distribution is used to evaluate the expected value of
the log-likelihood function,

Q(θ |θ(t)) = E [log L(θ; x , z )] =



n∑
i=1

2∑
j=1

T (t)
j ,i

[
log τj − 0.5 log |�j |

− 0.5(xi − µj )
′�−1

j (xi − µj ) −
(n

2

)
log(2π)

]}
.

15.2.2 M-Step

The determination of the maximizing values of θ in Q(θ |θ(t)) is relatively straight-
forward. Note that τ , (µ1, �1) and (µ2, �2) can be maximized independently of
each other since they appear in separate linear terms.
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First, consider the estimation of τ = τ1, which satisfies the constraint τ1
+ τ2 = 1:

τ (t+1) = arg max
τ

Q(θ |θ(t)) = arg max
τ

{[
n∑

i=1

T (t)
1,i

]
log τ1 +

[
n∑

i=1

T (t)
2,i

]
log τ2

}
.

This has the same form as the maximum likelihood estimate (MLE) of the
parameter in the binomial distribution. Hence,

τ
(t+1)
j =

∑n
i=1 T (t)

j ,i∑n
i=1(T

(t)
1,i + T (t)

2,i )
= 1

n

n∑
i=1

T (t)
j ,i for j = 1, 2.

The estimates of (µ1, �1) are found by maximizing

(µ
(t+1)
1 , �(t+1)

1 ) = arg max
µ1,�1

Q(θ |θ(t))

= arg max
µ1,�1

n∑
i=1

T (t)
1,i {−0.5 log |�1| − 0.5(xi − µ1)

′�−1
1 (xi − µ1)}.

This maximization has the same form as a weighted MLE of the parameters of
a normal distribution. Hence,

µ
(t+1)
1 =

∑n
i=1 T (t)

1,i xi∑n
i=1 T (t)

1,i

and �
(t+1)
1 =

∑n
i=1 T (t)

1,i (xi − µ
(t+1)
1 )(xi − µ

(t+1)
1 )′∑n

i=1 T (t)
1,i

and by symmetry,

µ
(t+1)
2 =

∑n
i=1 T (t)

2,i xi∑n
i=1 T (t)

2,i

and �
(t+1)
2 =

∑n
i=1 T (t)

2,i (xi − µ
(t+1)
2 )(xi − µ

(t+1)
2 )′∑n

i=1 T (t)
2,i

.

We iterate on these two steps until we reach convergence. The final estimates are
used to compute the posterior distribution of z = (z1, z 2, . . . , zn) (given in the first
equation of the section on the E-step), and units are assigned to the group with the
largest posterior probability. Software is available for the EM estimation and the
calculation of the posterior probabilities. Here we use the function vnormalmixEM
from the R package mixtools. Alternatively, one could use the bayesm package
for a full Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods.

EXAMPLE 15.3 EUROPEAN PROTEIN CONSUMPTION REVISITED

For illustration we use the data set we had used for k-means clustering in Example
15.1. We have data on 25 European countries (n = 25) that describe the protein
intake (in percent) from nine major food sources (p = 9).
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We consider the first two features, protein from red meat and protein from
white meat, and fit a mixture of two normal distributions. We allow the covariance
matrices to be different across the two groups. The clustering result is virtually
identical to the one given by the k-means algorithm.

library(mixtools)

## for a brief description of mvnormalmixEM
## mvnormalmixEM(x, lambda = NULL, mu = NULL, sigma = NULL, k = 2,
## arbmean = TRUE, arbvar = TRUE, epsilon = 1e-08,
## maxit = 10000, verb = FALSE)
## arbvar=FALSE same cov matrices
## arbvar=TRUE (default) different cov matrices
## arbmean=TRUE (default) different means
## k number of groups

food <- read.csv("C:/DataMining/Data/protein.csv")
## Consider just Red and White meat clusters
food[1:3,]

Country RedMeat WhiteMeat Eggs Milk Fish Cereals Starch Nuts Fr.Veg
1 Albania 10.1 1.4 0.5 8.9 0.2 42.3 0.6 5.5 1.7
2 Austria 8.9 14.0 4.3 19.9 2.1 28.0 3.6 1.3 4.3
3 Belgium 13.5 9.3 4.1 17.5 4.5 26.6 5.7 2.1 4.0

X=cbind(food[,2],food[,3])
X[1:3,]

[,1] [,2]
[1,] 10.1 1.4
[2,] 8.9 14.0
[3,] 13.5 9.3

set.seed(1)
## here we use an iterative procedure and the results in repeated
## runs may not be exactly the same
## set.seed(1) is used to obtain reproducible results

## mixtures of two normal distributions on the first 2 features
## we consider different variances
out2<-mvnormalmixEM(X,arbvar=TRUE,k=2,epsilon=1e-02)
out2

$lambda
[1] 0.4418574 0.5581426

$mu
$mu[[1]]
[1] 8.117431 4.388409

$mu[[2]]
[1] 11.18218 10.67281

$sigma
$sigma[[1]]

[,1] [,2]
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[1,] 3.3012533 -0.9631818
[2,] -0.9631818 1.8514426

$sigma[[2]]
[,1] [,2]

[1,] 12.505241 -4.493872
[2,] -4.493872 4.555115

$loglik
[1] -122.0898

$posterior
comp.1 comp.2

[1,] 9.999989e-01 1.090445e-06
[2,] 1.438527e-13 1.000000e+00
[3,] 3.599562e-08 1.000000e+00
[4,] 9.978098e-01 2.190198e-03
[5,] 1.991626e-08 1.000000e+00
[6,] 5.149435e-08 9.999999e-01
[7,] 8.655365e-08 9.999999e-01
[8,] 9.990689e-01 9.311203e-04
[9,] 7.324676e-16 1.000000e+00
[10,] 9.999738e-01 2.616119e-05
[11,] 1.373398e-07 9.999999e-01
[12,] 4.869934e-10 1.000000e+00
[13,] 9.992147e-01 7.853391e-04
[14,] 3.769919e-13 1.000000e+00
[15,] 9.995283e-01 4.717496e-04
[16,] 4.250826e-04 9.995749e-01
[17,] 9.999983e-01 1.679236e-06
[18,] 9.989033e-01 1.096650e-03
[19,] 9.999983e-01 1.702685e-06
[20,] 5.184376e-02 9.481562e-01
[21,] 2.905501e-09 1.000000e+00
[22,] 3.507084e-07 9.999996e-01
[23,] 9.996851e-01 3.149250e-04
[24,] 1.712852e-12 1.000000e+00
[25,] 9.999864e-01 1.355387e-05

prob1=round(out2$posterior[,1],digits=3)
prob2=round(out2$posterior[,2],digits=3)
prob=round(out2$posterior[,1])
o=order(prob)
data.frame(food$Country[o],prob1[o],prob2[o],prob[o])

food.Country.o. prob1.o. prob2.o. prob.o.
1 Austria 0.000 1.000 0
2 Belgium 0.000 1.000 0
3 Czechoslovakia 0.000 1.000 0
4 Denmark 0.000 1.000 0
5 E Germany 0.000 1.000 0
6 France 0.000 1.000 0
7 Hungary 0.000 1.000 0
8 Ireland 0.000 1.000 0
9 Netherlands 0.000 1.000 0
10 Poland 0.000 1.000 0
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11 Sweden 0.052 0.948 0
12 Switzerland 0.000 1.000 0
13 UK 0.000 1.000 0
14 W Germany 0.000 1.000 0
15 Albania 1.000 0.000 1
16 Bulgaria 0.998 0.002 1
17 Finland 0.999 0.001 1
18 Greece 1.000 0.000 1
19 Italy 0.999 0.001 1
20 Norway 1.000 0.000 1
21 Portugal 1.000 0.000 1
22 Romania 0.999 0.001 1
23 Spain 1.000 0.000 1
24 USSR 1.000 0.000 1
25 Yugoslavia 1.000 0.000 1

plot(food$Red, food$White, type="n",xlab="Red Meat",
+ ylab="White Meat")
text(x=food$Red,y=food$White,labels=food$Country,col=prob+1)
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Next, we consider all nine features and fit a mixture of two normal distributions.
We constrain the covariance matrices to be equal across the two groups. Even in
this restricted situation one has to estimate 45 parameters in the common 9 × 9
covariance matrix; this is not easy considering the fact that we have observations
from only 25 countries.

## mixtures of two normal distributions on all 9 features

## we consider equal variances

X1=cbind(food[,2],food[,3],food[,4],food[,5],food[,6],

food[,7],food[,8],food[,9],food[,10])

X1[1:3,]
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[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 10.1 1.4 0.5 8.9 0.2 42.3 0.6 5.5 1.7
[2,] 8.9 14.0 4.3 19.9 2.1 28.0 3.6 1.3 4.3
[3,] 13.5 9.3 4.1 17.5 4.5 26.6 5.7 2.1 4.0

set.seed(1)

out2all<-mvnormalmixEM(X1,arbvar=FALSE,k=2,epsilon=1e-02)

out2all

prob1=round(out2all$posterior[,1],digits=3)

prob2=round(out2all$posterior[,2],digits=3)

prob=round(out2all$posterior[,1])

data.frame(food$Country,prob1,prob2,prob)

food.Country prob1 prob2 prob
1 Albania 0 1 0
2 Austria 1 0 1
3 Belgium 1 0 1
4 Bulgaria 0 1 0
5 Czechoslovakia 1 0 1
6 Denmark 1 0 1
7 E Germany 1 0 1
8 Finland 1 0 1
9 France 1 0 1
10 Greece 0 1 0
11 Hungary 0 1 0
12 Ireland 1 0 1
13 Italy 1 0 1
14 Netherlands 1 0 1
15 Norway 1 0 1
16 Poland 1 0 1
17 Portugal 1 0 1
18 Romania 0 1 0
19 Spain 1 0 1
20 Sweden 1 0 1
21 Switzerland 1 0 1
22 UK 1 0 1
23 USSR 0 1 0
24 W Germany 1 0 1
25 Yugoslavia 0 1 0

o=order(prob)

data.frame(food$Country[o],prob[o])

food.Country.o. prob.o.
1 Albania 0
2 Bulgaria 0
3 Greece 0
4 Hungary 0
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5 Romania 0
6 USSR 0
7 Yugoslavia 0
8 Austria 1
9 Belgium 1
10 Czechoslovakia 1
11 Denmark 1
12 E Germany 1
13 Finland 1
14 France 1
15 Ireland 1
16 Italy 1
17 Netherlands 1
18 Norway 1
19 Poland 1
20 Portugal 1
21 Spain 1
22 Sweden 1
23 Switzerland 1
24 UK 1
25 W Germany 1

15.3 HIERARCHICAL CLUSTERING PROCEDURES

Hierarchical clustering is yet another approach of clustering n units (or objects),
each described by p features, into a smaller number of groups. Hierarchical cluster-
ing creates a hierarchy of clusters which can be represented in a treelike diagram,
called a dendrogram. In the dendrogram, units in the same cluster are joined by a
horizontal line, with the scale on the y-axis of the dendrogram reflecting a measure
of the distances of the units within the cluster. The leaves at the bottom of the den-
drogram represent the individual units; leaves are combined to form small branches,
small branches are combined into larger branches, until one reaches the trunk or
root of the tree that represents a single cluster containing all units. Dendrograms
are quite useful as they give us a visual representation of the clusters.

Algorithms for hierarchical clustering are either agglomerative, in which we
start at the individual leaves and successively merge clusters together, or divisive,
in which we start at the root and recursively split the clusters. Agglomerative
procedures represent a “bottom-up” approach, where each unit starts in its own
cluster and pairs of clusters are merged as we move up the hierarchy. Divisive
procedures represent a “top down” approach, where all units start in one cluster and
splits are performed recursively as we move down the hierarchy. We concentrate
our discussion on the commonly used agglomerative procedures.

Hierarchical clustering procedures require both a distance measure and a
linkage criterion. A distance measure between two objects with feature vectors
xi = (xi1, xi2, . . . , xip) and xj = (xj 1, xj 2, . . . , xjp) is non-negative and symmetric
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(i.e., d(xi , xj ) = d(xj , xi ) ≥ 0, with d(xi , xj ) = 0 implying xi = xj ) and satisfies
the triangle inequality (i.e., d(xi , xj ) ≤ d(xi , xk ) + d(xj , xk )). The Euclidian (L2)

norm d(xi , xj ) =
√∑p

r=1(xir − xjr )
2 and the L1 norm d(xi , xj ) = ∑p

r=1|xir − xjr |
are commonly used. For categorical variables, with features representing the
absence or presence of certain characteristics, we can define a measure of distance
from the number of matches and mismatches. Sometimes, distance is expressed
in terms of a similarity measure, which is the opposite (inverse) of the distance
measure.

The choice of the clusters, consisting of one or more units, to be merged (or split
in divisive clustering) is determined by the linkage criterion, which is a function of
all pairwise distances among the units in the two different clusters being considered
for distance evaluation.

The following illustrative example considers five units, {a} {b} {c} {d} and {e}.
Our agglomerative bottom-up method will build the hierarchy from the individual
units by progressively merging clusters. The first step is to determine which two
units to merge into the first cluster. We will merge the two closest units, as deter-
mined by the distance measure that we have selected. Suppose that we have merged
the two closest units c and e, giving us the following clusters: {a} {b}, {d}, and
{c e}. For further merging, we need to determine the distance between {a} and
{c e}, for example. We need to define what we mean by the distance between two
clusters. The distance between two clusters A and B, each of them consisting of
one or more units (elements), can be defined in several different ways:

As the maximum pairwise distance between units of different clusters,
max{d(x , y) : x ∈ A, y ∈ B}. This is referred to as complete-linkage clustering.

As the minimum pairwise distance between units of different clusters,
min{d(x , y) : x ∈ A, y ∈ B}. This is referred to as single-linkage clustering.

As the average pairwise distance between units of different clusters,
1/nu(A)nu(B)

(∑
x∈A

∑
y∈B d (x , y)

)
. This is referred to as average-linkage

clustering.
Several other linkage functions have been considered in the literature, but are

not discussed in this introduction.
Here is another way to think about the agglomerative clustering process. We start

with an n × n distance matrix where the number in the i -th row and j -th column
is the distance between the i -th and j -th units. The distance matrix is symmetric
with zeros in the diagonal, so only the lower (or upper) triangular region needs to
be filled in. Then, as the clustering progresses, rows and columns are combined as
clusters are merged and the distances between the merged rows and columns are
updated. This is how agglomerative clustering is implemented on computers.

We describe this approach for our illustration with the five units {a} {b} {c} {d}
and {e}. Assume that the pairwise distances are given in the 5 × 5 distance matrix as
shown in Table 15.1. The distance between units {c} and {e} is smallest; hence our
first cluster becomes {c e}; its units are two units apart. A new distance matrix, now
a 4 × 4 matrix, is constructed and the distances in this matrix need to be updated.
Assume that we use single-linkage clustering with linkage function min{d(x , y) :
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Table 15.1 Example of Single-Linkage Clustering

Original 5 × 5 distance matrix, with subsequent single-linkage clustering

a
b
c
d
e




0
9 0
3 7 0
6 5 9 0
11 10 2 8 0




(ce)

a
b
d




0
3 0
7 9 0
8 6 5 0




(ace)

b
d


0

7 0
6 5 0




(ace)

(bd)

[
0
6 0

]

The numbers in bold face refer to the minimum distances.

x ∈ A, y ∈ B}. The distance between the cluster {c e} and unit {a} is the minimum
of the distance between {c} and {a}, which is 3, and the distance between {e} and
{a}, which is 11. The minimum of these two numbers, 3, is entered in the updated
4 × 4 distance matrix as the distance between {c e} and {a}. Next, we calculate
the distance between {c e} and {b}. It is the minimum of d({c}, {b}) = 7 and
d({e}, {b}) = 10. The minimum is 7, and it is entered. The distance between
{c e} and {d} is min {d({c}, {d}), d({e}, {d})} = min {9, 8} = 8. The other
distances in the 4 × 4 matrix are distances among individual units and can be
copied from the initial distance matrix.

The smallest distance in the 4 × 4 matrix is between the cluster {c e}
and {a}, with cluster distance 3, leading to the formation of a new cluster
of three elements {a c e}. We need to update the distance matrix to form a
3 × 3 matrix. The distance between {a c e} and {b}, under single linkage, is
min {d ({a}, {b}), d({c}, {b}), d({e}, {b})} = min {9, 7, 10} = 7 using
the pairwise distances among units that are given in the first 5 × 5 distance
matrix. Even simpler, we could have calculated the distance between {a c e}
and {b} from min {d({a}, {b}), d({c e}, {b})} = min{9, 7} = 7, using the
updated 4 × 4 distance matrix. The distance between {a c e} and {d} is min
{d({a}, {d}), d({c e}, {d})} = min{6, 8} = 6, and the distance between {b}
and {d} is 5. These become the entries in the 3 × 3 distance matrix. The
smallest distance is now between {b} and {d}. This becomes our next cluster
and the updated 2 × 2 distance matrix is shown in Table 15.1. The distance
between the cluster {a c e} and the new one {b d}, under single linkage, is min
{d({a c e}, {b}), d({a c e}, {d})} = min{7, 6} = 6. The two clusters {a c e}
and {b d} are linked at distance 6.
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Table 15.2 Example of Complete-Linkage Clustering

Original 5 × 5 distance matrix, with subsequent complete-linkage clustering

a
b
c
d
e




0
9 0
3 7 0
6 5 9 0
11 10 2 8 0




(ce)

a
b
d




0
11 0
10 9 0
9 6 5 0




(ce)

(bd)

a


 0

10 0
11 9 0




(ce)

(abd)

[
0
11 0

]

The numbers in bold face refer to the minimum distances.

Each agglomeration occurs at a greater distance between clusters than the pre-
vious agglomeration. We can decide to stop clustering either when the clusters are
too far apart to be merged (distance criterion), or when there is a sufficiently small
number of clusters (number criterion).

How would this aggregation work under complete linkage, with linkage func-
tion max{d(x , y) : x ∈ A, y ∈ B}? The steps are shown in Table 15.2. With our
first cluster {c e}, we update the entries in the 4 × 4 matrix as follows. The
distance between the cluster {c e} and unit {a} is now the maximum of the
distance between {c} and {a}, which is 3, and the distance between {e} and
{a}, which is 11. The maximum of these two numbers, 11, is entered in the
new distance matrix as the distance between {c e} and {a}. Next, we calculate
the distance between {c e} and {b}. It is the maximum of d({c}, {b}) = 7 and
d({e}, {b}) = 10. The maximum 10 is entered. The distance between {c e} and
{d} is max {d({c}, {d}), d({e}, {d})} = max{9, 8} = 9. The other distances in
the 4 × 4 matrix are distances among individual units and can be copied from the
initial distance matrix.

The smallest distance in the 4 × 4 matrix is between the units {b} and {d}, lead-
ing to the new cluster {b d} with distance measure 5 and the updated distances in a
3 × 3 distance matrix. The distance between {c e} and {b d}, under complete link-
age, is max {d({c e}, {b}), d({c e}, {d})} = max{10, 9} = 10, using the entries
in the 4 × 4 distance matrix. The distance between the new cluster {b d} and {a},
under complete linkage, is max {d({a}, {b}), d({a}, {d})} = max{9, 6} = 9. The
distance between {c e} and {a}, 11, was already part of the 4 × 4 distance matrix
calculated earlier.
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The smallest distance in the 3 × 3 distance matrix is now between {b d}
and {a}, and hence {a b d} becomes our next cluster. This cluster forms at
distance 9. The updated 2 × 2 distance matrix is shown next. The distance
between the cluster {c e} and the newly formed cluster {a b d} is the maximum
{d({c e}, {b d}), d({c e}, {a})} = max{10, 11} = 11. The clusters {c e} and
{a b d} get linked at distance 11.

Dendrograms for single and complete linkage are shown in Figure 15.1. Objects
in the same cluster are joined by a horizontal line whose height on the dendrogram

Dendrogram of  agnes(x = dis, diss = TRUE,
metric = "eucledian", method = "single")
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Dendrogram of  agnes(x = dis, diss = TRUE,
metric = "eucledian", method = "complete)
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Figure 15.1 Dendrograms for single and complete linkage.
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(y-axis) reflects the distance of the units within that cluster. The clustering and
the scale on the dendrogram depends on the particular linkage criterion that has
been adopted. By looking at the height on the y-scale of the dendrogram we can
assess the price (expressed as distance among the units in the cluster) that is paid
by clustering objects into larger and larger groups.

We could repeat the clustering and create a dendrogram under average link-
age. Average linkage uses the average pairwise distance between units of different
clusters, 1/nu(A)nu(B)

(∑
x∈A

∑
y∈B d (x , y)

)
. The calculations for this linkage cri-

terion are a bit more involved as we need to keep track of the distances between
individual units when updating the distance measures. For complete and simple
linkage the update is easier as we can update the new distance matrix from the one
that comes immediately before. However, calculations are easily performed with
computer programs, and these programs also display the dendrograms.

For a particular problem at hand it is always a good idea to try several clustering
methods, using different distance measures and different linkage criteria. We need
to explore whether the different methods are more or less consistent, and whether
the results make sense and can be interpreted. Clustering methods are known to
be sensitive to small perturbations and outliers, and also to differences in scale.
If features involve measurements with very different scales it is always a good
idea to first standardize the measurements so that they have similar means and
variances. Also, note that there is no provision in hierarchical clustering for re-
allocating objects that have been linked together, perhaps incorrectly, at an earlier
stage. Once a unit is included in a cluster, it stays there.

For agglomerative clustering we use the function agnes in the R package clus-
ter. Alternatively, we can use the function hclust in the stats package. The help
documentation in R will tell you about the various modeling and output options.

EXAMPLE 15.4 EUROPEAN PROTEIN CONSUMPTION REVISITED

library(cluster)
food <- read.csv("C:/DataMining/Data/protein.csv")
food[1:3,]

Country RedMeat WhiteMeat Eggs Milk Fish Cereals Starch Nuts Fr.Veg
1 Albania 10.1 1.4 0.5 8.9 0.2 42.3 0.6 5.5 1.7
2 Austria 8.9 14.0 4.3 19.9 2.1 28.0 3.6 1.3 4.3
3 Belgium 13.5 9.3 4.1 17.5 4.5 26.6 5.7 2.1 4.0

## we use the program agnes in the package cluster
## argument diss=FALSE indicates that we use the dissimilarity
## matrix that is being calculated from raw data.
## argument metric="euclidian" indicates that we use Euclidian
## distance
## no standardization is used as the default
## the default is "average" linkage
## Using data on all nine variables (features)
## Euclidean distance and average linkage
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The dendrogram, resulting from agglomerative clustering with Euclidean dis-
tance and average linkage is shown below. A horizontal line at height 16 results in
seven clusters. The countries in these clusters are quite similar (but not identical)
to the clusters we obtained with the k-means clustering method in Section 15.1.
Five clusters remain if you draw the line at height 19, and two clusters remain
if you draw it at 25. Single and complete linkage will lead to somewhat different
clusters and conclusions.

foodagg=agnes(food,diss=FALSE,metric="euclidian")

plot(foodagg) ## dendrogram

Dendrogram of  agnes(x = food, diss = FALSE, metric = "euclidian")

food
Agglomerative Coefficient =  0.64
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R programs for agglomerative clustering of the European protein data (output
shown here) and the US unemployment data (output not shown) can be found on
the web page that accompanies this book.

EXAMPLE 15.5 MONTHLY US UNEMPLOYMENT RATES REVISITED

We revisit the data on US unemployment that we discussed in Example 15.2. Here
we use a 50 × 50 distance matrix which is constructed as follows: The (i,j)th
element of the distance matrix is defined as 1 minus the correlation coefficient of
the first temporal differences (monthly changes) in states i and j. It turns out that all
pairwise correlations of the differenced time series are positive. For a correlation of
one, the distance is zero and the two states are closely (in fact, perfectly) related.
For a correlation close to zero, the distance is 1 and the states are different. The
R program, when clustering on that particular distance matrix is listed on the
web page that accompanies this book. We leave the interpretation of the results

www.it-ebooks.info

http://www.it-ebooks.info/


REFERENCES 219

as an exercise. A second version of the analysis considers the correlations of the
unemployment rates (the levels) between states i and j .

We may want to adjust a few outliers in the unemployment data set. States AZ,
LA, and MS have outliers. An adjusted data set is also available. LA and MS data
were adjusted to smooth out the impacts of Hurricane Katrina in the fall of 2005.
The gap in AZ (we really do not know the reason for the sudden drop) was also
smoothed out. The adjusted data are in the file adj3unempstates.csv. You may want
to re-run the clustering with the adjusted data set using the program that is listed
on the web page that accompanies this book.
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CHAPTER 16

Market Basket Analysis: Association
Rules and Lift

Market basket analysis looks at purchase coincidence. It investigates whether two
products are being purchased together, and whether the purchase of one product
increases the likelihood of purchasing the other.

The data typically encountered in these applications can be arranged in a large
matrix of rows and columns. Rows represent the different shoppers (or shopping
trips) and columns represent the different products. The entries in the data matrix
are the incidences (1 or 0) indicating whether or not the item in column j of the
matrix (say Goose Island beer) is purchased by the shopper in row i (say Ledolter).
The dimensions of the data matrix are usually quite large, with the information
on incidences coming from many shoppers (rows) and many different products
(columns).

Other common applications involve subscribers to internet radio sites making
selections to listen to certain artists (bands). Internet radio (also known as streaming
radio or web radio) has a huge following. While in the past services used to be
free, owing to copyright considerations, sites such as Last.fm now charge the users
a small monthly fee for gaining access to their play list. Data on the listening
preferences of subscribers is being collected continuously. Again, dimensions of
the data matrices involved tend to be huge, with many users (100,000s of users)
and many different artists (10,000s of artists). The entries in the data matrix are
incidences (1/0) indicating whether or not a certain user listens to a certain artist.
Market basket analysis is also used by Netflix, the American provider of on-demand
internet streaming media with information on movie viewing incidences on more
than 25 million customers, and Amazon, the world’s largest online retailer, with
information on purchase incidences on thousands of products across millions of
customers.

Knowing which supermarket products tend to get purchased together and know-
ing which pair of artists or pair of movies have high co-incidences brings important
benefits. This knowledge allows for targeted (i.e., “smart”) marketing, where cus-
tomers who have bought one product or viewed one type of movie are being
targeted (or “recommended”) for advertisements that push related products that

Data Mining and Business Analytics with R, First Edition. Johannes Ledolter.
 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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have high chances of being purchased. Recommender systems have become very
common. Noting that a customer views certain products on Amazon.com, the store
will recommend additional items. Netflix offers suggestions for movies that a user
might like to watch. Many of these recommendations are based on incidence (and
co-incidence) information that these companies have obtained from their customers.

Recall from elementary probability calculus the following results about proba-
bilities:

P(A): Probability that product A is being purchased (event A)—The proportion
of times event A occurred is also referred to as the support of A. It is the
relative frequency of 1s in column A of the incidence matrix.

P(B): Probability that product B is being purchased (event B)—The proportion
of times event B occurred is referred to as the support of B. It is the relative
frequency of 1s in column B of the incidence matrix.

P(A and B): Probability that products A and B are being purchased at the same
time—The proportion of times events A and B occurred together is referred
to as the support of A and B. It is the relative frequency of having 1s (i.e.,
of co-incidence) in both columns A and B of the incidence matrix.

We look for association rules such as: A = LHS (buy chips) → B = RHS (buy
beer). The left-hand side is referred to as “antecedent”; the right-hand side is
referred to as “consequent”; and the arrow expresses “is related to.”

P(B |A) is the conditional probability of B given A. It expresses the probability of
event B (the RHS: buying beer), knowing that event A (the LHS: buying chips) has
occurred. Recall from your study of probability that P(B |A) = P(A and B)/P(A).

The conditional probability of B (RHS) given A (LHS) is referred to as the
confidence of B. It expresses our confidence that product B gets bought if A has
been purchased. If this is a small number, the relationship between antecedent A
and consequent B is not very relevant as in this case B is unlikely to occur. The
confidence is calculated as the ratio, supp(A = LHS and B = RHS)/supp(A =
LHS), with the supports of these two events being obtained from the incidence
matrix.

The lift of A on B is defined as the ratio

lift(A → B) = P(B |A)

P(B)
= P(A and B)

P(A)P(B)
.

It compares P(B |A) with P(B). If this ratio is larger than 1, we say that A (LHS)
results in an upward lift on B (RHS). Knowing that A (the antecedent) has occurred,
increases the chance that B (the consequent) occurs. The lift of A (LHS) on B (RHS)
is calculated as the ratio supp(LHS and RHS)/[supp(LHS)supp(RHS)]. Note that
this is the same as the lift of B on A, P(A|B)/P(A) = P(A and B)/P(A)P(B).

It is important to find antecedents that result in big lifts. But, big lifts are practi-
cally relevant only if the consequent has a reasonable chance of occurring. Hence,
one screens for combinations that result in good lift as well as high confidence.
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Some authors introduce yet another measure and define the leverage of A =
LHS on B = RHS as

leverage(A → B) = P(A and B) − P(A)P(B),
= lift(A → B)P(A)P(B) − P(A)P(B),
= [lift(A → B) − 1]P(A)P(B).

The leverage is 0 if there is no association, and it is ≥ 0 if A has a lift on B.
The multiplication with P(A)P(B) incorporates the importance of both antecedent
and consequent. If they are not likely, then the lift does not translate into leverage.
A lower lift, but with a higher likelihood of both antecedent and consequent, may
still be of practical interest.
Comment: Confidence and lift can all be obtained from the incidence matrix.
However, with the usually very large dimensions of this matrix, supports of many
events need to be computed. For 1000 columns (products), there is the need to
form half a million pairs and calculate one million confidences and lifts, before the
screening for the important events can even start. Considering that the incidence
matrix may have 100,000 rows (customers), this certainly amounts to a lot of data
crunching. Fortunately, efficient software is available to carry out the calculations
and screen for good lift and high confidence, and an efficient R package for doing
this will be described in the examples.
Comment: Furthermore, why restrict oneself to just one column or item when
defining the conditioning (the antecedent, or LHS) variable? Why not consider
pairs or triples of columns, and study the relationship between a consequent and
an antecedent that is being described by the joint occurrence of several items
(columns)? If this is done, then we also need to calculate the support of triples
and quadruples of columns. This involves even more computations and searches,
making it even more critical that the algorithms are efficient.

16.1 EXAMPLE 1: ONLINE RADIO

Online radio keeps track of everything you play. It uses this information for recom-
mending music you are likely to enjoy and supports focused marketing that sends
you advertisements for music you are likely to buy. Why waste scarce advertising
dollars on items that customers are unlikely to purchase.

Suppose you were given data from a music community site. For each user you
may have a log of every artist he/she had downloaded to their computer. You
may even have demographic information on the user (such as age, sex, location,
occupation, and interests). Your objective is to build a system that recommends
new music to users in this community. From the available information, it is usually
quite easy to determine the support for (i.e., the frequencies of listening to) various
individual artists, as well as the joint support for pairs (or larger groupings) of
artists. All you have to do is count the incidences (0/1) across all members of your
network and divide those frequencies by the number of your members. From the
support we can calculate the confidence and the lift.
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For illustration we use a large data set with close to 300,000 records
of song (artist) selections made by 15,000 users. Even larger data sets are
available on the web (see, e.g., Celma (2010), and the data sets on his web
page http://ocelma.net/MusicRecommendationDataset). Each row of our data set
contains the name of the artist the user has listened to. Our first user, a woman
from Germany, has listened to 16 artists, resulting in the first 16 rows of the
data matrix. The two demographic variables listed here (gender and country) are
not used in our analysis. However, it would be straightforward to stratify the
following market basket analysis on gender and country of origin, and investigate
whether findings change (we recommend that you do this as an exercise).

We use the R package arules, a very convenient and efficient package for mining
association rules and for identifying frequent item sets (Hahsler et al., 2005). The
first thing we need to accomplish is to transform the data as given here into an
incidence matrix where each listener represents a row, with 0 and 1s across the
columns indicating whether or not he or she has played a certain artist. The R
template shown in the following illustrates how this can be done. The incidence
matrix is stored in the R object “playlist.” The support for each of the 1004 artists
is calculated, and the support is displayed for all artists with support larger than
0.08 (this means that artists shown on the graph are played by more than 8% of
the users).

The last step in the program involves the construction of the association rules
(using the function apriori in the R package arules). We look for artists (or groups
of artists) who have support larger than 0.01 (1%) and who give confidence to
another artist that is larger than 0.50 (50%). These requirements rule out rare artists.
Observe that the program also calculates and lists antecedents (LHS) that involve
more than one artist. For example, listening both to “Muse” and “The Beatles” has
support larger than 0.01, and the confidence for “Radiohead,” given that someone
listens to both “Muse” and “The Beatles,” is 0.507. These two numbers exceed
the two requirements we had put on the screening. Antecedents that involve three
artists do not come up in the list as they do not meet both requirements. You can
see that many computations and logical queries need to be carried out before such
a list is obtained.

The list is further narrowed down by also requiring that the lift is larger than
5, and the resulting list is ordered according to decreasing confidence. Listening
to both “Led Zeppelin” and “The Doors” is quite predictive of listening to “Pink
Floyd” (the confidence is about 50%). Knowing that someone listens to both “Led
Zeppelin” and “The Doors” increases the chance of listening to “Pink Floyd” more
than 5 − fold (lift = 5.69). Listening to “Judas Priest” lifts the chance of listening
to the “Iron Maiden” by a factor of 8.56. If we know that a user listens to “Judas
Priest,” we should definitely recommend that he also listens to “Iron Maiden.”

### *** Play counts *** ###

lastfm <- read.csv("C:/DataMining/Data/lastfm.csv")
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lastfm[1:19,]

user artist sex country
1 1 red hot chili peppers f Germany
2 1 the black dahlia murder f Germany
3 1 goldfrapp f Germany
4 1 dropkick murphys f Germany
5 1 le tigre f Germany
6 1 schandmaul f Germany
7 1 edguy f Germany
8 1 jack johnson f Germany
9 1 eluveitie f Germany
10 1 the killers f Germany
11 1 judas priest f Germany
12 1 rob zombie f Germany
13 1 john mayer f Germany
14 1 the who f Germany
15 1 guano apes f Germany
16 1 the rolling stones f Germany
17 3 devendra banhart m United States
18 3 boards of canada m United States
19 3 cocorosie m United States

length(lastfm$user) ## 289,955 records in the file
lastfm$user <- factor(lastfm$user)
levels(lastfm$user) ## 15,000 users
levels(lastfm$artist) ## 1,004 artists

library(arules) ## a-rules package for association rules
## Computational environment for mining association rules and
## frequent item sets

## we need to manipulate the data a bit before using arules
## we split the data in the vector x into groups defined in vector f
## in supermarket terminology, think of users as shoppers and artists
## as items bought
playlist <- split(x=lastfm[,"artist"],f=lastfm$user)
## split into a list of users
playlist[1:2]
## the first two listeners (1 and 3) listen to the following bands

$‘1‘
[1] red hot chili peppers the black dahlia murder goldfrapp
[4] dropkick murphys le tigre schandmaul
[7] edguy jack johnson eluveitie
[10] the killers judas priest rob zombie
[13] john mayer the who guano apes
[16] the rolling stones
1004 Levels: …and you will know us by the trail of dead [unknown] … zero 7

$‘3‘
[1] devendra banhart boards of canada cocorosie
[4] aphex twin animal collective atmosphere
[7] joanna newsom air portishead
[10] massive attack broken social scene arcade fire
[13] plaid prefuse 73 m83
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[16] the flashbulb pavement goldfrapp
[19] amon tobin sage francis four tet
[22] max richter autechre radiohead
[25] neutral milk hotel beastie boys aesop rock
[28] mf doom the books
1004 Levels: …and you will know us by the trail of dead [unknown] … zero 7

## an artist may be mentioned by the same user more than once
## it is important to remove artist duplicates before creating
## the incidence matrix

playlist <- lapply(playlist,unique) ## remove artist duplicates

playlist <- as(playlist,"transactions")
## view this as a list of "transactions"
## transactions is a data class defined in arules

itemFrequency(playlist)
## lists the support of the 1,004 bands
## number of times band is listed to on the playlist of 15,000 users
## computes relative frequency of artist mentioned by the 15,000 users

itemFrequencyPlot(playlist,support=.08,cex.names=1.5)
## plots the item frequencies (only bands with > % support)
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## Finally, we build the association rules
## only associations with support > 0.01 and confidence > .50
## this rules out rare bands

musicrules <- apriori(playlist,parameter=list(support=.01,
+ confidence=.5))

inspect(musicrules)

lhs rhs support confidence lift
1 {t.i.} => {kanye west} 0.01040000 0.5672727 8.854413
2 {the pussycat dolls} => {rihanna} 0.01040000 0.5777778 13.415893
3 {the fray} => {coldplay} 0.01126667 0.5168196 3.260006
4 {sonata arctica} => {nightwish} 0.01346667 0.5101010 8.236292
5 {judas priest} => {iron maiden} 0.01353333 0.5075000 8.562992
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6 {the kinks} => {the beatles} 0.01360000 0.5298701 2.979030
7 {travis} => {coldplay} 0.01373333 0.5628415 3.550304
8 {the flaming lips} => {radiohead} 0.01306667 0.5297297 2.938589
9 {megadeth} => {metallica} 0.01626667 0.5281385 4.743759
10 {simon & garfunkel} => {the beatles} 0.01540000 0.5238095 2.944956
11 {broken social scene} => {radiohead} 0.01506667 0.5472155 3.035589
12 {blur} => {radiohead} 0.01753333 0.5228628 2.900496
13 {keane} => {coldplay} 0.02226667 0.6374046 4.020634
14 {snow patrol} => {coldplay} 0.02646667 0.5251323 3.312441
15 {beck} => {radiohead} 0.02926667 0.5092807 2.825152
16 {snow patrol,

the killers} => {coldplay} 0.01040000 0.5954198 3.755802
17 {radiohead,

snow patrol} => {coldplay} 0.01006667 0.6344538 4.002021
18 {death cab for cutie,

the shins} => {radiohead} 0.01006667 0.5033333 2.792160
19 {the beatles,

the shins} => {radiohead} 0.01066667 0.5673759 3.147425
20 {led zeppelin,

the doors} => {pink floyd} 0.01066667 0.5970149 5.689469
21 {pink floyd,

the doors} => {led zeppelin} 0.01066667 0.5387205 6.802027
22 {pink floyd,

the doors} => {the beatles} 0.01000000 0.5050505 2.839489
23 {the beatles,

the strokes} => {radiohead} 0.01046667 0.5607143 3.110471
24 {oasis,

the killers} => {coldplay} 0.01113333 0.6626984 4.180183
25 {oasis,

the beatles} => {coldplay} 0.01060000 0.5196078 3.277594
26 {oasis,

radiohead} => {coldplay} 0.01273333 0.5876923 3.707058
27 {beck,

the beatles} => {radiohead} 0.01300000 0.5909091 3.277972
28 {bob dylan,

the rolling stones} => {the beatles} 0.01146667 0.5910653 3.323081
29 {david bowie,

the rolling stones} => {the beatles} 0.01000000 0.5703422 3.206572
30 {led zeppelin,

the rolling stones} => {the beatles} 0.01066667 0.5776173 3.247474
31 {radiohead,

the rolling stones} => {the beatles} 0.01060000 0.5638298 3.169958
32 {coldplay,

the smashing pumpkins} => {radiohead} 0.01093333 0.6283525 3.485683
33 {the beatles,

the smashing pumpkins} => {radiohead} 0.01146667 0.6209386 3.444556
34 {radiohead,

u2} => {coldplay} 0.01140000 0.5213415 3.288529
35 {coldplay,

sigur r~A3s} => {radiohead} 0.01206667 0.5801282 3.218167
36 {sigur r~A3s,

the beatles} => {radiohead} 0.01046667 0.6434426 3.569393
37 {bob dylan,

pink floyd} => {the beatles} 0.01033333 0.6150794 3.458092
38 {bob dylan,

radiohead} => {the beatles} 0.01386667 0.5730028 3.221530
39 {bloc party,

the killers} => {coldplay} 0.01106667 0.5236593 3.303150
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40 {david bowie,
pink floyd} => {the beatles} 0.01006667 0.5741445 3.227949

41 {david bowie,
radiohead} => {the beatles} 0.01393333 0.5225000 2.937594

42 {placebo,
radiohead} => {muse} 0.01366667 0.5137845 4.504247

43 {led zeppelin,
radiohead} => {the beatles} 0.01306667 0.5283019 2.970213

44 {death cab for cutie,
the killers} => {coldplay} 0.01086667 0.5884477 3.711823

45 {death cab for cutie,
the beatles} => {radiohead} 0.01246667 0.5013405 2.781105

46 {muse,
the killers} => {coldplay} 0.01513333 0.5089686 3.210483

47 {red hot chili peppers,
the killers} => {coldplay} 0.01086667 0.5093750 3.213047

48 {the beatles,
the killers} => {coldplay} 0.01253333 0.5340909 3.368950

49 {radiohead,
the killers} => {coldplay} 0.01506667 0.5243619 3.307582

50 {muse,
the beatles} => {radiohead} 0.01380000 0.5073529 2.814458

## let’s filter by lift > 5.
## Among those associations with support > 0.01 and confidence > .50,
## only show those with lift > 5

inspect(subset(musicrules, subset=lift > 5))

lhs rhs support confidence lift
1 {t.i.} => {kanye west} 0.01040000 0.5672727 8.854413
2 {the pussycat dolls} => {rihanna} 0.01040000 0.5777778 13.415893
3 {sonata arctica} => {nightwish} 0.01346667 0.5101010 8.236292
4 {judas priest} => {iron maiden} 0.01353333 0.5075000 8.562992
5 {led zeppelin,

the doors} => {pink floyd} 0.01066667 0.5970149 5.689469
6 {pink floyd,

the doors} => {led zeppelin} 0.01066667 0.5387205 6.802027

## lastly, order by confidence to make it easier to understand
inspect(sort(subset(musicrules, subset=lift > 5), by="confidence"))

lhs rhs support confidence lift
1 {led zeppelin,

the doors} => {pink floyd} 0.01066667 0.5970149 5.689469
2 {the pussycat dolls} => {rihanna} 0.01040000 0.5777778 13.415893
3 {t.i.} => {kanye west} 0.01040000 0.5672727 8.854413
4 {pink floyd,

the doors} => {led zeppelin} 0.01066667 0.5387205 6.802027
5 {sonata arctica} => {nightwish} 0.01346667 0.5101010 8.236292
6 {judas priest} => {iron maiden} 0.01353333 0.5075000 8.562992

16.2 EXAMPLE 2: PREDICTING INCOME

As second example we use the Adult data set from the UCI machine learning
repository; this data set was analyzed by Hahsler et al. (2005) in their illustration
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of the R package arules. The data, taken from the US Census Bureau database,
contains 48,842 individuals with data on income and several possible predictors
of income such as age, work class, education, and so on. The first part of the R
program in their paper (copied below) transforms the original variables into 115
binary indicator variables. Income, for example is coded as “small” (US$50,000
or less) and “large” (US$50,000 or more). We skip these details and focus our
attention on the resulting transaction (incidence) matrix Adult with its 48,842 rows
and 115 columns. Since the dimensions of the matrix are so large, the matrix
is stored in a special, sparse, transaction matrix format. The item (column) with
the largest number of 1s is “capital − loss = none” (46,560 out of 48,842). The
number of 1s on a subject (also referred to as the length) varies between 9 and
13; this narrow band is not surprising as indicator variables were constructed from
categorical variables, and we know that summing over indicators of each categorical
variable must give one for every subject. But, it is the way how these 0s and 1s
coincide that matters. We get a better understanding of how the strings of zeros
and ones look like by considering the incidence matrix (which we create from
the transaction matrix). The indicator for small income (0/1) is in the penultimate
column; the indicator for large income is in the very last column.

Next, we apply the R function apriori. This function calculates and screens the
support, the confidence and the lift of items. Consequents in apriori are single
items (columns), but antecedents can be either single items or groups of items
(item sets). Here we use the default specification for two of apriori’s parameters,
and specify minlen (an integer value for the minimal number of items per item set)
as 1 and maxlen (an integer value for the maximal number of items per item set)
as 10. This means that apriori searches over all item sets for which the sum of the
number of items in the LHS item set and the (single) item on the RHS is between
1 and 10. This involves quite a lot of computations and queries. In this particular
application we consider only those LHS and RHS item sets for which the support
is at least 0.01 and the confidence is at least 0.60.

What happens if we had specified minlen = 3 and maxlen = 3? Then apriori
searches over all combinations of item sets with two items in the antecedent
group and one item as consequent; for 115 items, it calculates statistics for
(115)(114)(113)/2 = 740, 715 LHS and RHS arrangements.

Finally, we search over a subset of all rules (with support greater than 0.01
and confidence greater than 0.60, as specified previously) that have small income
on the RHS and achieve a lift larger than 1.2. The combinations that satisfy these
conditions are the ones that are able to predict small income earners from the coded
explanatory information. Similarly, we search and list all rules that identify high
income earners. We find that workers in the private sector working part-time tend
to have a small income, while persons with high capital gain who are born in the
United States tend to have a large income.

library(arules)
data(AdultUCI)
dim(AdultUCI)
AdultUCI[1:3,]
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age workclass fnlwgt education education-num marital-status
1 39 State-gov 77516 Bachelors 13 Never-married
2 50 Self-emp-not-inc 83311 Bachelors 13 Married-civ-spouse
3 38 Private 215646 HS-grad 9 Divorced

occupation relationship race sex capital-gain capital-loss
1 Adm-clerical Not-in-family White Male 2174 0
2 Exec-managerial Husband White Male 0 0
3 Handlers-cleaners Not-in-family White Male 0 0

hours-per-week native-country income
1 40 United-States small
2 13 United-States small
3 40 United-States small

AdultUCI[["fnlwgt"]] <- NULL
AdultUCI[["education-num"]] <- NULL
AdultUCI[["age"]] <- ordered(cut(AdultUCI[["age"]], c(15, 25, 45, 65,

+ 100)), labels = c("Young", "Middle-aged", "Senior", "Old"))
AdultUCI[["hours-per-week"]] <- ordered(cut(AdultUCI[["hours-per-

+ week"]], c(0, 25, 40, 60, 168)), labels = c("Part-time",
+ "Full-time", "Over-time", "Workaholic"))
AdultUCI[["capital-gain"]] <- ordered(cut(AdultUCI[["capital-gain"]],

+ c(-Inf, 0, median(AdultUCI[["capital-gain"]][AdultUCI
+ [["capital-gain"]] > 0]), Inf)),
+ labels = c("None", "Low", "High"))
AdultUCI[["capital-loss"]] <- ordered(cut(AdultUCI[["capital-loss"]],

+ c(-Inf, 0, median(AdultUCI[["capital-loss"]][AdultUCI
+ [["capital-loss"]] > 0]), Inf)), labels = c("none", "low", "high"))

Adult <- as(AdultUCI, "transactions")
Adult

transactions in sparse format with
48842 transactions (rows) and
115 items (columns)

summary(Adult)

transactions as itemMatrix in sparse format with
48842 rows (elements/itemsets/transactions) and
115 columns (items) and a density of 0.1089939

most frequent items:
capital-loss=none capital-gain=None

46560 44807
native-country=United-States race=White

43832 41762
workclass=Private (Other)

33906 401333

element (itemset/transaction) length distribution:
sizes

9 10 11 12 13
19 971 2067 15623 30162

Min. 1st Qu. Median Mean 3rd Qu. Max.
9.00 12.00 13.00 12.53 13.00 13.00

includes extended item information - examples:
labels variables levels
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1 age=Young age Young
2 age=Middle-aged age Middle-aged
3 age=Senior age Senior

includes extended transaction information - examples:
transactionID

1 1
2 2
3 3

aa=as(Adult,"matrix")
## transforms transaction matrix into an incidence matrix
aa[1:2,] # print the first two rows of the incidence matrix

age=Young age=Middle-aged age=Senior age=Old workclass=Federal-gov
1 0 1 0 0 0
2 0 0 1 0 0

workclass=Local-gov workclass=Never-worked workclass=Private
1 0 0 0
2 0 0 0

workclass=Self-emp-inc workclass=Self-emp-not-inc workclass=State-gov
1 0 0 1
2 0 1 0

workclass=Without-pay education=Preschool education=1st-4th education=5th-6th
1 0 0 0 0
2 0 0 0 0

education=7th-8th education=9th education=10th education=11th education=12th
1 0 0 0 0 0
2 0 0 0 0 0

education=HS-grad education=Prof-school education=Assoc-acdm
1 0 0 0
2 0 0 0

education=Assoc-voc education=Some-college education=Bachelors
1 0 0 1
2 0 0 1

education=Masters education=Doctorate marital-status=Divorced
1 0 0 0
2 0 0 0

marital-status=Married-AF-spouse marital-status=Married-civ-spouse
1 0 0
2 0 1

marital-status=Married-spouse-absent marital-status=Never-married
1 0 1
2 0 0

marital-status=Separated marital-status=Widowed occupation=Adm-clerical
1 0 0 1
2 0 0 0

occupation=Armed-Forces occupation=Craft-repair occupation=Exec-managerial
1 0 0 0
2 0 0 1

occupation=Farming-fishing occupation=Handlers-cleaners
1 0 0
2 0 0

occupation=Machine-op-inspct occupation=Other-service
1 0 0
2 0 0

occupation=Priv-house-serv occupation=Prof-specialty
1 0 0
2 0 0

occupation=Protective-serv occupation=Sales occupation=Tech-support
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1 0 0 0
2 0 0 0

occupation=Transport-moving relationship=Husband relationship=Not-in-family
1 0 0 1
2 0 1 0

relationship=Other-relative relationship=Own-child relationship=Unmarried
1 0 0 0
2 0 0 0

relationship=Wife race=Amer-Indian-Eskimo race=Asian-Pac-Islander race=Black
1 0 0 0 0
2 0 0 0 0

race=Other race=White sex=Female sex=Male capital-gain=None capital-gain=Low
1 0 1 0 1 0 1
2 0 1 0 1 1 0

capital-gain=High capital-loss=none capital-loss=low capital-loss=high
1 0 1 0 0
2 0 1 0 0

hours-per-week=Part-time hours-per-week=Full-time hours-per-week=Over-time
1 0 1 0
2 1 0 0

hours-per-week=Workaholic native-country=Cambodia native-country=Canada
1 0 0 0
2 0 0 0

native-country=China native-country=Columbia native-country=Cuba
1 0 0 0
2 0 0 0

native-country=Dominican-Republic native-country=Ecuador
1 0 0
2 0 0

native-country=El-Salvador native-country=England native-country=France
1 0 0 0
2 0 0 0

native-country=Germany native-country=Greece native-country=Guatemala
1 0 0 0
2 0 0 0

native-country=Haiti native-country=Holand-Netherlands
1 0 0
2 0 0

native-country=Honduras native-country=Hong native-country=Hungary
1 0 0 0
2 0 0 0

native-country=India native-country=Iran native-country=Ireland
1 0 0 0
2 0 0 0

native-country=Italy native-country=Jamaica native-country=Japan
1 0 0 0
2 0 0 0

native-country=Laos native-country=Mexico native-country=Nicaragua
1 0 0 0
2 0 0 0

native-country=Outlying-US(Guam-USVI-etc) native-country=Peru
1 0 0
2 0 0

native-country=Philippines native-country=Poland native-country=Portugal
1 0 0 0
2 0 0 0

native-country=Puerto-Rico native-country=Scotland native-country=South
1 0 0 0
2 0 0 0
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native-country=Taiwan native-country=Thailand native-country=Trinadad& Tobago
1 0 0 0
2 0 0 0

native-country=United-States native-country=Vietnam native-country=Yugoslavia
1 1 0 0
2 1 0 0

income=small income=large
1 1 0
2 1 0

itemFrequencyPlot(Adult[, itemFrequency(Adult) > 0.2], cex.names = 1)
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rules <- apriori(Adult, parameter = list(support = 0.01,
+ confidence = 0.6))

parameter specification:
confidence minval smax arem aval originalSupport support minlen maxlen target

0.6 0.1 1 none FALSE TRUE 0.01 1 10 rules
ext

FALSE

algorithmic control:
filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt
set item appearances …[0 item(s)] done [0.00s].
set transactions …[115 item(s), 48842 transaction(s)] done [0.04s].
sorting and recoding items … [67 item(s)] done [0.01s].
creating transaction tree … done [0.05s].
checking subsets of size 1 2 3 4 5 6 7 8 9 10 done [1.14s].
writing … [276443 rule(s)] done [0.09s].
creating S4 object … done [0.17s].
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rules

set of 276443 rules

summary(rules)

set of 276443 rules

rule length distribution (lhs + rhs):sizes
1 2 3 4 5 6 7 8 9 10
6 432 4981 22127 52669 75104 67198 38094 13244 2588

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.000 6.000 6.289 7.000 10.000

summary of quality measures:
support confidence lift

Min. :0.01001 Min. :0.6000 Min. : 0.7171
1st Qu.:0.01253 1st Qu.:0.7691 1st Qu.: 1.0100
Median :0.01701 Median :0.9051 Median : 1.0554
Mean :0.02679 Mean :0.8600 Mean : 1.3109
3rd Qu.:0.02741 3rd Qu.:0.9542 3rd Qu.: 1.2980
Max. :0.95328 Max. :1.0000 Max. :20.6826

mining info:
data ntransactions support confidence

Adult 48842 0.01 0.6

rulesIncomeSmall <- subset(rules, subset = rhs %in% "income=small"
+ & lift > 1.2)
inspect(sort(rulesIncomeSmall, by = "confidence")[1:3])

lhs rhs support confidence lift
1 {workclass=Private,

marital-status=Never-married,
relationship=Own-child,
sex=Male,
hours-per-week=Part-time,
native-country=United-States} => {income=small} 0.01074895 0.7104195 1.403653

2 {workclass=Private,
marital-status=Never-married,
relationship=Own-child,
sex=Male,
hours-per-week=Part-time} => {income=small} 0.01144507 0.7102922 1.403402

3 {workclass=Private,
marital-status=Never-married,
relationship=Own-child,
sex=Male,
capital-gain=None,
hours-per-week=Part-time,
native-country=United-States} => {income=small} 0.01046231 0.7097222 1.402276

rulesIncomeLarge <- subset(rules, subset = rhs %in% "income=large"
+ & lift > 1.2)
inspect(sort(rulesIncomeLarge, by = "confidence")[1:3])

lhs rhs support confidence lift
1 {marital-status=Married-civ-spouse,

capital-gain=High,
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native-country=United-States} => {income=large} 0.01562180 0.6849192 4.266398

2 {marital-status=Married-civ-spouse,
capital-gain=High,
capital-loss=none,
native-country=United-States} => {income=large} 0.01562180 0.6849192 4.266398

3 {relationship=Husband,
race=White,
capital-gain=High,
native-country=United-States} => {income=large} 0.01302158 0.6846071 4.264454

REFERENCES
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CHAPTER 17

Dimension Reduction: Factor Models
and Principal Components

Scarcity of data is not a problem in data mining applications. Usually, the opposite
is true: too much data. Assume that we study n units (objects or cases). A unit
may be a person making a buying decision, a physical object such as a car, or
the economy at a certain period of time. We are interested in the response a buyer
makes (such as whether he buys and how much he buys), interested in whether
the car experiences problems before the warranty period is over, and interested in
next month’s unemployment rate. Economists will immediately think of hundreds
of variables that (may) have an effect on next month’s unemployment rate: interest
rates, money supply, employment, consumer confidence, inventory levels, exchange
rates, wage rates, inflation, and so on. Monthly information on all these variables
is available for the past couple of months, which gives us a very large number of
possible predictor variables. The performance of a physical object (whether a car
will fail or whether a high quality piece of steel will break at normal operating
conditions) depends on the many factors that go into its production. Again, it
is not very difficult to come up with a large number of variables that relate to
this outcome. Similarly, the decision whether to buy or not to buy depends on
numerous factors: the price of the product, the prices of competing products, their
advertisement, the general economic climate, the personal finances of the buyer,
whether the buyer already has similar products, whether other buyers have bought
the product, and so forth.

Arrange the data on the many, many explanatory variables into a data matrix
X with n rows (the number of units or cases, such as the number of buyers, the
number of studied cars, and the number of months) and p columns (the number
of variables). The number of columns will be quite large, perhaps larger than
the number of rows (units). But the columns of the X matrix are usually highly
correlated; while we may have 100 measures on the state of the economy for a
certain month, these indicators measure the same thing, namely, the state of the
economy at a certain period of time. The state of the economy can probably be
represented reasonably well with a smaller number of “state” vectors or factors

Data Mining and Business Analytics with R, First Edition. Johannes Ledolter.
 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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that combine the information from the 100 variables in a certain “smart” way. The
objective of this section is to explore ways of transforming the columns of the X
matrix such that its dimension is reduced. It may be possible to construct three
or four combinations of the original variables, let us call them our new factors,
which then explain most of the information that is present in the matrix X . This
dimension-reduction step certainly makes any subsequent modeling of the response
easier as now one relates the response to a much smaller number of constructed
factors. In addition, note that a brute force regression modeling of the response in
terms of hundreds of explanatory variables will not work in situations where the
number of columns in the X matrix exceeds the number of its rows.

Even if there is no response to model, it makes good sense to reduce the dimen-
sionality of a data matrix X . Just the fact that we have data on many variables
does not mean that we know what is going on. Looking at a fewer number of
transformed variables may give us more useful information. We attempt to reduce
the very high dimensional information down to a few important constructed fac-
tors (much fewer than p). We do this by building a simple linear model for X that
represents X in a lower dimensional space.

An obvious first step is to inspect all pairwise correlations among the p columns
of the X matrix. The entries in the resulting p × p correlation matrix (a very large
symmetric matrix, with 1’s in the diagonal) can be shaded or colored according to
the size of the correlations. Or, one can only show those correlations that exceed
certain thresholds (such as correlations larger than 0.9 or smaller than −0.9). How-
ever, note that this initial step only looks at pairwise relationships. Approaches that
look at all variables together are needed, and they are described next.

A factor model is a regression on a multivariate n × p matrix X = {xij } such
that

E [xij ] = φj 1vi1 + φj 2vi2 + · · · + φjk vik , (17.1)

where the vi1, vi2, . . . , vik are the realizations of k ≤ p new factors (here defined
for unit i ) that explain, or are being shared by, the data matrix of the original p
variables. The coefficients φj 1, φj 2, . . . , φjk are the loadings of the original variable
xj (j = 1, 2, . . . , p) onto these k new factors.

Here is another way to think about this model. Consider the i th row of the
matrix X (we now fix the unit; such as the buyer, the car, or the month) and
consider the p-dimensional vector of its characteristics xi1, xi2, . . . , xip . Treating
x̃i = (xi1, xi2, . . . , xip)

′ as a p × 1 column vector, we can write the factor model
as

E [̃xi ] = φ1vi1 + φ2vi2 + · · · + φk vik . (17.2)

This shows that the p original variables can be written as linear combina-
tions of k factors. The coefficients φ1, φ2, . . . , φk are now column vectors with
p rows. The first vector, for example, consists of elements φ11, φ21, . . . , φp1. The
last one consists of elements φ1k , φ2k , . . . , φpk . If k < p , we achieve a reduction in
dimensionality.

www.it-ebooks.info

http://www.it-ebooks.info/


DIMENSION REDUCTION: FACTOR MODELS AND PRINCIPAL COMPONENTS 237

It would be easy to get the loadings if the factors were known. Then the load-
ings could be estimated by regressing each of the p variables xj on the factors
v1, v2, . . . , vk ; here each variable and all factors are vectors of length n . Many
regressions (p of them) would have to be carried out. The regression of the
first column of the X matrix on the k factors would give us the coefficients
φ11, φ12, . . . , φ1k ; the regression of the second column of the X matrix on the
k factors would give us the coefficients φ21, φ22, . . . , φ2k ; and so on. But the fac-
tors are not known, so this method cannot be used. Instead, one can use the method
of principal components to obtain both the factors and the loadings at the same
time.

Principal components analysis (PCA) is a mathematical procedure that uses an
orthogonal transformation to convert a set of observations of possibly (and most
likely) correlated variables x1, x2, . . . , xp (i.e., the columns of the X matrix) into a
set of values of uncorrelated variables called the principal components. The number
of principal components, k , is less than or equal to the number of original variables
p. The transformations are defined in such a way that the first principal component
(a linear combination of the p original variables x1, x2, . . . , xp) has as high a
variance as possible (in other words, it accounts for as much of the variability in
the data as possible), and that each succeeding component, in turn, has the highest
variance possible under the constraint that it is orthogonal to (uncorrelated with)
the preceding components.

PCA is an important tool in exploratory data analysis and is used for prepro-
cessing high dimensional explanatory information that can simplify any subsequent
predictive modeling. PCA can be carried out by an eigenvalue decomposition of
the data covariance matrix (a p × p matrix) or through a singular-value decom-
position of the data matrix X , usually after mean-centering each column. We are
skipping the mathematical details as they require a fair amount of matrix algebra.
The output of a PCA gives us the weights that are used to project the original
observations into the new directions; they are called the loadings and are identical
to the vector loadings φ1, φ2, . . . , φk in the factor model representation in Equation
17.2, with k = p factors. The loadings are used to calculate the principal compo-
nents scores (resulting in p values for each row or unit of the data matrix). These
are the factor scores vi1, vi2, . . . , vip in the factor model representation with p
factors.

PCA reveals the internal structure of the data in a way that best explains the vari-
ance in the data. The elements of the multivariate data set X can be visualized in a
high dimensional space, with each of the p variables defining an axis. PCA supplies
a lower dimensional picture of the data matrix, a projection or “shadow” of X when
viewed from its most informative viewpoint. This projection is achieved by using
the first few principal components so that the dimensionality of the transformed
data is reduced.

Here is another and somewhat more basic explanation. Consider a data matrix
consisting of just two columns, x1 and x2. A scatter plot of the two variables
tells us about the direction in which the variability of the points is largest. Think
about an elongated elliptic scatter around a line that runs through the data set.
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This line describes the maximal variation in the data if we decide to reduce the
dimensionality of the data from 2 dimensions to 1. A perpendicular projection of
the data points onto this line gives us a set of one-dimensional values for which the
variance will be maximal. These projected values are the scores of the first principal
component. The coefficients of the linear projection transformation (here there are
two coefficients, and they multiply xi1 and xi2 to obtain the projection, or the first
principal component score vi1) are the loadings of the first principal component.
With just two columns of the X matrix and in two-dimensional space, the second
principal component represents the line that is perpendicular to the first best fitting
line. With more than two variables and columns in the X matrix, we first get the
direction v1 that has the largest variance. Then we search among all directions that
are orthogonal to v2 for the direction with the largest variance. This is the second
principal component v2. Then we look for the direction that is orthogonal to both
v1 and v2 and that has the largest variance; this results in v3; and so on.

A PCA partitions the total variance in the X matrix, V (Total) = V (x1) +
V (x2) + · · · + V (xp), into variances of p newly constructed principal component
scores, V (Total) = V (v1) + V (v2) + · · · + V (vp), that are now ordered from
largest to smallest. The constructed variables are linear combinations of the
original variables, and the weights are selected such that the linear combinations
are orthogonal.

PCA can be applied to the raw data and covariance matrices or to standardized
data and correlation matrices. Standardization is appropriate if the variables have
different units (e.g., when one variable is measured in million dollars and the
other in percentages). As PCA is sensitive to the relative scaling of the original
variables, we recommend that all original variables x1, x2, . . . , xp are scaled to
have unit variance. Standardization is less useful if we analyze variables that have
the same units (such as the unemployment rates of the 50 states).

The R program prcomp in the stats package is used for the subsequent
analyses.

17.1 EXAMPLE 1: EUROPEAN PROTEIN CONSUMPTION

We considered this data set before when we used it to illustrate clustering in
Chapter 15. The data set consists of 25 units (European countries; n = 25) and
their protein intakes (in percentage) from nine major food sources (p = 9). Here
we use the data set to illustrate PCA as a dimension-reduction technique. PCA finds
the linear combination of the nine variables (the columns of the X matrix) that has
the largest variability and thus explains most of the variation. After finding this
linear combination (the first direction), PCA looks for a second linear combination
(direction) that is orthogonal to the first one and that maximizes the variance in
this second direction, and so on. The hope is that one needs only a few of these
linear combinations (or directions) to describe the data. The scores (the linear
combinations applied to the original variables of the n units) are called the principal
components.
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The output under “rotation” lists the matrix of loadings on the original variables
(i.e., the weights in the linear combinations that transform the original variables into
the principal components scores). These weights are also the factor loadings in our
factor-model representation in Equation 17.2 (this is because the transformations
are orthogonal, and because the inverse of an orthogonal matrix is equal to its
transpose).

The first principal component (shown later in the output) puts weight −0.302
on RedMeat, −0.310 on WhiteMeat, and so on. These weights represent the entries
in the p × 1 vector of loadings φ1. The second principal component puts weight
−0.056 on RedMeat, −0.237 on WhiteMeat, and so on. These weights represent
the entries in the vector of loadings φ2. Until the last (ninth) principal component
with weights 0.246 on RedMeat, 0.592 on WhiteMeat, and so on. These weights
represent the entries in the vector of loadings φ9.

Principal components scores result if the loadings of the variables (listed under
rotation) are applied to the values on the original variables. We achieve this with
the predict function in R. This results in nine n × 1 vectors of principal compo-
nents scores. These are equivalent to the factors v1, v2, . . . , vp in our factor-model
representation in Equation 17.1, with p = 9 factors.

The output under “standard deviations” lists the standard deviations of the
nine constructed linear combinations. Note that they are ranked from large to
small and note that their squares (the variances) add up to 9. This is because
in this example we are working with standardized observations, and the sum of
variances of the nine standardized variables equals 9. A graph of the variances
shows that the first two or three linear combinations explain most of the total
variability.

The factor model with k = p = 9 factors replicates the data matrix X exactly.
The factor model with k < p factors provides an approximation, but if the first few
principal components explain much of the variability, the approximation will be
excellent. The factor-model representation in two dimensions with k = 2 factors,
for example, approximates the 9 × 1 vector x̃i of row i through E [̃xi ] = φ1vi1 +
φ2vi2, where φ1 and φ2 are the first two loadings (given under rotations in the
R output) and where vi1 and vi2 are the i th scores on the first two principal
components (given in the R output under predict).

A scatter plot of the first two principal components with labels for country shows
that Portugal and Spain are quite high in the second dimension. The loadings for
the second principal component describe a diet that is high on fish, starch (bread),
and vegetables.

food <- read.csv("C:/DataMining/Data/protein.csv")
food

Country RedMeat WhiteMeat Eggs Milk Fish Cereals Starch Nuts Fr.Veg
1 Albania 10.1 1.4 0.5 8.9 0.2 42.3 0.6 5.5 1.7
2 Austria 8.9 14.0 4.3 19.9 2.1 28.0 3.6 1.3 4.3
3 Belgium 13.5 9.3 4.1 17.5 4.5 26.6 5.7 2.1 4.0
4 Bulgaria 7.8 6.0 1.6 8.3 1.2 56.7 1.1 3.7 4.2
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5 Czechoslovakia 9.7 11.4 2.8 12.5 2.0 34.3 5.0 1.1 4.0
6 Denmark 10.6 10.8 3.7 25.0 9.9 21.9 4.8 0.7 2.4
7 E Germany 8.4 11.6 3.7 11.1 5.4 24.6 6.5 0.8 3.6
8 Finland 9.5 4.9 2.7 33.7 5.8 26.3 5.1 1.0 1.4
9 France 18.0 9.9 3.3 19.5 5.7 28.1 4.8 2.4 6.5
10 Greece 10.2 3.0 2.8 17.6 5.9 41.7 2.2 7.8 6.5
11 Hungary 5.3 12.4 2.9 9.7 0.3 40.1 4.0 5.4 4.2
12 Ireland 13.9 10.0 4.7 25.8 2.2 24.0 6.2 1.6 2.9
13 Italy 9.0 5.1 2.9 13.7 3.4 36.8 2.1 4.3 6.7
14 Netherlands 9.5 13.6 3.6 23.4 2.5 22.4 4.2 1.8 3.7
15 Norway 9.4 4.7 2.7 23.3 9.7 23.0 4.6 1.6 2.7
16 Poland 6.9 10.2 2.7 19.3 3.0 36.1 5.9 2.0 6.6
17 Portugal 6.2 3.7 1.1 4.9 14.2 27.0 5.9 4.7 7.9
18 Romania 6.2 6.3 1.5 11.1 1.0 49.6 3.1 5.3 2.8
19 Spain 7.1 3.4 3.1 8.6 7.0 29.2 5.7 5.9 7.2
20 Sweden 9.9 7.8 3.5 24.7 7.5 19.5 3.7 1.4 2.0
21 Switzerland 13.1 10.1 3.1 23.8 2.3 25.6 2.8 2.4 4.9
22 UK 17.4 5.7 4.7 20.6 4.3 24.3 4.7 3.4 3.3
23 USSR 9.3 4.6 2.1 16.6 3.0 43.6 6.4 3.4 2.9
24 W Germany 11.4 12.5 4.1 18.8 3.4 18.6 5.2 1.5 3.8
25 Yugoslavia 4.4 5.0 1.2 9.5 0.6 55.9 3.0 5.7 3.2

## correlation matrix
cor(food[,-1])

RedMeat WhiteMeat Eggs Milk Fish Cereals
RedMeat 1.00000000 0.1530027 0.58560895 0.5029311 0.06095745 -0.49987746
WhiteMeat 0.15300271 1.0000000 0.62040916 0.2814839 -0.23400923 -0.41379691
Eggs 0.58560895 0.6204092 1.00000000 0.5755331 0.06557136 -0.71243682
Milk 0.50293110 0.2814839 0.57553312 1.0000000 0.13788370 -0.59273662
Fish 0.06095745 -0.2340092 0.06557136 0.1378837 1.00000000 -0.52423080
Cereals -0.49987746 -0.4137969 -0.71243682 -0.5927366 -0.52423080 1.00000000
Starch 0.13542594 0.3137721 0.45223071 0.2224112 0.40385286 -0.53326231
Nuts -0.34944855 -0.6349618 -0.55978097 -0.6210875 -0.14715294 0.65099727
Fr.Veg -0.07422123 -0.0613167 -0.04551755 -0.4083641 0.26613865 0.04654808

Starch Nuts Fr.Veg
RedMeat 0.13542594 -0.3494486 -0.07422123
WhiteMeat 0.31377205 -0.6349618 -0.06131670
Eggs 0.45223071 -0.5597810 -0.04551755
Milk 0.22241118 -0.6210875 -0.40836414
Fish 0.40385286 -0.1471529 0.26613865
Cereals -0.53326231 0.6509973 0.04654808
Starch 1.00000000 -0.4743116 0.08440956
Nuts -0.47431155 1.0000000 0.37496971
Fr.Veg 0.08440956 0.3749697 1.00000000

pcafood <- prcomp(food[,-1], scale=TRUE)
## we strip the first column (country labels) from the data set
## scale = TRUE: variables are first standardized. Default is FALSE
pcafood

Standard deviations:
[1] 2.0016087 1.2786710 1.0620355 0.9770691 0.6810568 0.5702026 0.5211586
[8] 0.3410160 0.3148204

Rotation:
PC1 PC2 PC3 PC4 PC5

RedMeat -0.3026094 -0.05625165 -0.29757957 -0.646476536 0.32216008
WhiteMeat -0.3105562 -0.23685334 0.62389724 0.036992271 -0.30016494
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Eggs -0.4266785 -0.03533576 0.18152828 -0.313163873 0.07911048
Milk -0.3777273 -0.18458877 -0.38565773 0.003318279 -0.20041361
Fish -0.1356499 0.64681970 -0.32127431 0.215955001 -0.29003065
Cereals 0.4377434 -0.23348508 0.09591750 0.006204117 0.23816783
Starch -0.2972477 0.35282564 0.24297503 0.336684733 0.73597332
Nuts 0.4203344 0.14331056 -0.05438778 -0.330287545 0.15053689
Fr.Veg 0.1104199 0.53619004 0.40755612 -0.462055746 -0.23351666

PC6 PC7 PC8 PC9
RedMeat -0.45986989 0.15033385 -0.01985770 0.2459995
WhiteMeat -0.12100707 -0.01966356 -0.02787648 0.5923966
Eggs 0.36124872 -0.44327151 -0.49120023 -0.3333861
Milk 0.61843780 0.46209500 0.08142193 0.1780841
Fish -0.13679059 -0.10639350 -0.44873197 0.3128262
Cereals 0.08075842 0.40496408 -0.70299504 0.1522596
Starch 0.14766670 0.15275311 0.11453956 0.1218582
Nuts 0.44701001 -0.40726235 0.18379989 0.5182749
Fr.Veg 0.11854972 0.44997782 0.09196337 -0.2029503

foodpc <- predict(pcafood)
foodpc

PC1 PC2 PC3 PC4 PC5 PC6
[1,] 3.4853673 -1.63047985 -1.76123326 -0.2296580 0.02325397 -1.03426476
[2,] -1.4226694 -1.04123130 1.33780391 -0.1680973 -0.93344658 0.21842810
[3,] -1.6220323 0.15949557 0.21653445 -0.5207260 0.75509039 -0.28980510
[4,] 3.1340813 -1.30106563 0.15128956 -0.2141894 -0.48474537 -0.69557793
[5,] -0.3704646 -0.60266842 1.19594183 0.4639821 0.25682380 -0.82309047
[6,] -2.3652688 0.28544582 -0.75226337 0.9673412 -0.75243310 -0.17032964
[7,] -1.4222108 0.45030085 1.30254017 1.1359613 0.42294279 -0.64831247
[8,] -1.5638563 -0.59600255 -2.04950734 1.4153084 0.03720310 0.83420035
[9,] -1.4879824 0.78536517 0.00188261 -1.9574576 0.25045870 -0.89894837

[10,] 2.2397000 1.00105887 -0.88260339 -1.7943200 -0.40497731 1.14447671
[11,] 1.4574398 -0.81595115 1.91416751 0.2173883 -0.04139773 0.53910843
[12,] -2.6634775 -0.76370648 -0.01988068 -0.4347281 1.01438731 0.48232591
[13,] 1.5345653 0.39898708 0.12608962 -1.2224605 -0.80354036 0.21408555
[14,] -1.6414454 -0.91199089 0.76648819 0.1261517 -0.76127751 0.29752197
[15,] -0.9747029 0.82202867 -1.70407650 1.1376216 -0.41487370 -0.05645162
[16,] -0.1218695 0.53174194 1.47478926 0.4582224 -0.02321953 0.58830002
[17,] 1.7058540 4.28893399 0.04363280 0.8935596 -0.38528872 -0.69709651
[18,] 2.7568124 -1.11878536 0.07008085 0.6150113 0.31709607 0.13051679
[19,] 1.3118074 2.55352416 0.51528370 -0.3592043 0.51590218 0.66928818
[20,] -1.6337300 -0.20738445 -1.28037195 0.7341013 -0.81982482 0.04407662
[21,] -0.9123182 -0.75105865 -0.15425409 -1.1704447 -0.83095955 -0.09024236
[22,] -1.7353682 -0.09397944 -1.15268145 -1.7336921 1.08393948 -0.09656499
[23,] 0.7825965 -0.11077014 -0.36967910 0.9275729 1.66955744 0.18542992
[24,] -2.0938353 -0.29377901 0.80397944 -0.1087951 -0.06836077 -0.20099295
[25,] 3.6230077 -1.03802883 0.20604724 0.8215511 0.37768982 0.35391862

PC7 PC8 PC9
[1,] -0.47174197 0.76155126 -0.10325325
[2,] -0.18115417 -0.25100249 -0.21744631
[3,] -0.19559674 -0.20331176 -0.03317146
[4,] 0.46478244 -0.80824466 -0.29986287
[5,] 0.31494841 0.01229809 -0.14944825
[6,] -0.22581590 -0.62102079 0.48027941
[7,] -0.55478278 -0.16317720 -0.25990129
[8,] 0.72623047 0.22591749 -0.13308980
[9,] 0.94647514 -0.02222005 0.54360773

[10,] -0.14739068 -0.30583067 0.38796520
[11,] -0.76810179 0.14561849 0.53694446
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[12,] -0.02866861 0.02299904 -0.07946587
[13,] 0.14999185 -0.08040607 -0.73235148
[14,] -0.06209574 0.45992565 0.26087199
[15,] -0.04278766 -0.10734586 -0.14732974
[16,] 1.26072252 0.19159633 -0.22099984
[17,] 0.04649963 0.20502225 0.26348804
[18,] -0.13307908 -0.02689368 0.33803173
[19,] -0.59721082 0.23532802 -0.47673575
[20,] -0.54116219 -0.07221780 -0.10839228
[21,] 0.51229089 0.52929748 0.06656513
[22,] -0.65096941 -0.23920906 -0.13193590
[23,] 0.57410168 -0.05202711 0.09168518
[24,] -0.45677673 0.35662909 -0.02527918
[25,] 0.06129122 -0.19327598 0.14922442

## how many principal components do we need?
plot(pcafood, main="")
mtext(side=1, "European Protein Principal Components", line=1, font=2)
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European Protein Principal Components

## how do the PCs look?

par(mfrow=c(1,2))

plot(foodpc[,1:2], type="n", xlim=c(-4,5))

text(x=foodpc[,1], y=foodpc[,2], labels=food$Country)

plot(foodpc[,3:4], type="n", xlim=c(-3,3))

text(x=foodpc[,3], y=foodpc[,4], labels=food$Country)
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pcafood$rotation[,2]

RedMeat WhiteMeat Eggs Milk Fish Cereals
-0.05625165 -0.23685334 -0.03533576 -0.18458877 0.64681970 -0.23348508

Starch Nuts Fr.Veg
0.35282564 0.14331056 0.53619004

17.2 EXAMPLE 2: MONTHLY US UNEMPLOYMENT RATES

Here the data matrix X has n = 50 rows (representing the 50 states) and
p = 416 columns (the monthly observations). Let us summarize the 416 monthly
unemployment rates through a smaller set of constructed variables. We find that
the first two or three principal components explain most of the variability. The
first principal component represents the common trend component of the 50 time
series; a time sequence plot of the average monthly unemployment rates and
a graph of the 416 loadings of the variables on the first principal component
(here loadings are multiplied by −1) are very similar (the absolute value of the
correlation between the average monthly unemployment rates and the loadings on
the first principal component is 0.83).

Principal components scores are obtained and the scatter plot of the first two
principal components is shown on the following page. It is of interest to check
whether an informal clustering of the 50 states on the basis of the first two principal
component scores would be similar to the results of k-means clustering that uses
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the information on all 416 components. The cluster assignments from k-means
clustering with three clusters are superimposed in color on the scatter plot of
the first two principal components. The results show that much of the k-means
clustering information is already contained in the first two principal components.

library(cluster) ## needed for cluster analysis
states=c("AL","AK","AZ","AR","CA","CO","CT","DE","FL","GA","HI","ID",

+ "IL","IN","IA","KS","KY","LA","ME","MD","MA","MI","MN","MS","MO",
+ "MT","NE","NV","NH","NJ","NM","NY","NC","ND","OH","OK","OR","PA",
+ "RI","SC","SD","TN","TX","UT","VT","VA","WA","WV","WI","WY")
states

[1] "AL" "AK" "AZ" "AR" "CA" "CO" "CT" "DE" "FL" "GA" "HI" "ID" "IL" "IN" "IA"
[16] "KS" "KY" "LA" "ME" "MD" "MA" "MI" "MN" "MS" "MO" "MT" "NE" "NV" "NH" "NJ"
[31] "NM" "NY" "NC" "ND" "OH" "OK" "OR" "PA" "RI" "SC" "SD" "TN" "TX" "UT" "VT"
[46] "VA" "WA" "WV" "WI" "WY"

raw <- read.csv("C:/DataMining/Data/unempstates.csv")
raw[1:3,]

AL AK AZ AR CA CO CT DE FL GA HI ID IL IN IA KS KY LA ME
1 6.4 7.1 10.5 7.3 9.3 5.8 9.4 7.7 10.0 8.3 9.9 5.5 6.4 6.9 4.2 4.3 5.7 6.2 8.8
2 6.3 7.0 10.3 7.2 9.1 5.7 9.3 7.8 9.8 8.2 9.8 5.4 6.4 6.6 4.2 4.2 5.6 6.2 8.6
3 6.1 7.0 10.0 7.1 9.0 5.6 9.2 7.9 9.5 8.1 9.6 5.4 6.4 6.4 4.1 4.2 5.5 6.2 8.5

MD MA MI MN MS MO MT NE NV NH NJ NM NY NC ND OH OK OR
1 6.9 11.1 10.0 6.2 7.0 5.8 5.8 3.6 9.8 7.2 10.5 8.9 10.2 6.7 3.2 8.3 6.4 10.1
2 6.7 10.9 9.9 6.0 6.8 5.8 5.7 3.5 9.5 7.1 10.4 8.8 10.2 6.5 3.3 8.2 6.3 9.8
3 6.6 10.6 9.8 5.8 6.6 5.8 5.7 3.3 9.3 7.0 10.4 8.7 10.1 6.3 3.3 8.0 6.1 9.5

PA RI SC SD TN TX UT VT VA WA WV WI WY
1 8.1 7.8 7.6 3.6 5.9 5.9 6.1 8.8 6.2 8.7 8.3 5.9 4.2
2 8.1 7.8 7.4 3.5 5.9 5.9 5.9 8.7 6.1 8.7 8.1 5.7 4.1
3 8.0 7.9 7.2 3.4 5.9 5.8 5.7 8.6 5.9 8.7 7.9 5.6 4.0

## transpose so that we have 50 rows (states) and 416 columns
rawt=matrix(nrow=50,ncol=416)
rawt=t(raw)
rawt[1:3,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
AL 6.4 6.3 6.1 6.0 6.0 6.0 6.2 6.3 6.4 6.5 6.6 6.7 6.9 7.0
AK 7.1 7.0 7.0 7.0 7.0 7.1 7.4 7.7 8.0 8.3 8.5 8.7 8.9 9.1
AZ 10.5 10.3 10.0 9.8 9.6 9.5 9.5 9.5 9.6 9.6 9.6 9.5 9.4 9.3
. . .

pcaunemp <- prcomp(rawt,scale=FALSE)
pcaunemp

plot(pcaunemp, main="")
mtext(side=1,"Unemployment: 50 states",line=1,font=2)
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pcaunemp$rotation[,1]
pcaunemp$rotation[1:10,1] ## just the first 10 values

[1] -0.03260897 -0.03208997 -0.03203986 -0.03153477 -0.03165013 -0.03200857
[7] -0.03212307 -0.03211913 -0.03232713 -0.03247573

ave=dim(416)
for (j in 1:416) {
ave[j]=mean(rawt[,j])
}

par(mfrow=c(1,2))
## plot negative loadings for first principal component
plot(-pcaunemp$rotation[,1])
## plot monthly averages of unemployment rates
plot(ave,type="l",ylim=c(3,10),xlab="month",ylab="ave

+ unemployment rate")
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abs(cor(ave,pcaunemp$rotation[,1]))

[1] 0.8257265

pcaunemp$rotation[,2]

pcaunemp$rotation[,3]

## below we obtain the scores of the principal components

## the first 2–3 principal components do a good job

unemppc <- predict(pcaunemp)

unemppc

## below we construct a scatter plot of the first two

## principal components

## we assess whether an informal clustering on the first two

## principal components would have lead to a similar

## clustering than the clustering results of the k-means

## clustering approach applied on all 416 components

## the graph indicates that it does

set.seed(1)

grpunemp3 <- kmeans(rawt,centers=3,nstart=10)

par(mfrow=c(1,1))

plot(unemppc[,1:2],type="n")

text(x=unemppc[,1],y=unemppc[,2],labels=states,col=rainbow(7)

+ [grpunemp3$cluster])
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CHAPTER 18

Reducing the Dimension in
Regressions with Multicollinear Inputs:
Principal Components Regression and
Partial Least Squares

In the previous chapter, we discussed how principal components analysis (PCA)
can help reduce the dimensionality of a data matrix X consisting of n rows and
p columns. In some applications of PCA, dimensionality reduction is the only
objective, and the knowledge that certain linear combinations are able to explain
most of the variability in the X matrix is all that is needed. But more often the
goal is to predict a response y , and PCA is only a first step of the analysis.
Often there are more predictors than the number of cases, which would make a
brute-force regression impossible. PCA’s role is to reduce the large number of
correlated predictor variables down to a smaller and more manageable number
of transformed predictors that represent most of the information in the original
predictor matrix X . Instead of regressing the response y on the original predictor
variables directly, principal components regression uses the principal components
as predictors. Typically, one uses only a subset of the most important principal
components in the regression. Regression on principal components is frequently
used in econometrics where one encounters a large number of highly correlated
predictor variables. Stock and Watson (2002a, 2002b) use PCA in their diffusion
index approach to forecasting.

Note that in principal components regression, the response y plays no role in
determining the transformed predictor variables. One wonders whether an approach
that incorporates the response in the construction of the transformed predictors
from the very beginning would work better. This is where partial least squares
(PLS) comes into the picture. PLS, a regression technique for tough regression
problems with many and usually highly-correlated covariates, constructs a set of
linear combinations of the inputs in the matrix X for subsequent regression, but,
unlike principal components regression, it uses y in the construction of these linear
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combinations. PLS, introduced by Wold (1975), is widely used in chemometrics,
where ill-posed regression problems with many highly-correlated inputs seem to be
the norm. For details on this method and how it relates to standard least squares,
see Frank and Friedman (1993).

Like principal components regression, PLS is not scale invariant; so it is common
to standardize each predictor column j so that the columns xj (for j = 1, 2, . . . , p)
have all mean zero and variance one. PLS begins by computing, for each j ,
the inner product of xj and the response vector y , φ̂1j = x ′

j y . These projections,
φ̂11, φ̂12, . . . , φ̂1p , become the loadings when constructing the first (derived) input
variable z1 = ∑p

j=1 φ̂1j xj ; this is referred to as the first PLS direction. Different
from principal components regression, the inputs xj in the linear combination z1
are weighted by their relationship with the response y . Next, we orthogonalize
the input vectors x1, x2, . . . , xp with respect to the first PLS direction z1. We
do this by regressing each xj on z1 and treating the residuals from this regres-
sion as the new x (2)

j . With the new x (2)
j we determine a second set of loadings

φ̂2j = (x (2)
j )′y (j = 1, 2, . . . , p) and the second PLS direction z2 = ∑p

j=1 φ̂2j x
(2)
j .

Next, we orthogonalize the input vectors x (2)
1 , x (2)

2 , . . . , x (2)
p with respect to the sec-

ond PLS direction z2, determine a third set of loadings and the third PLS direction,
and so on. We continue this process, until k ≤ p directions have been obtained.
The regression of the response y on the first k PLS directions describes the PLS fit.
If we construct all k = p directions (assuming that this is actually possible and that
the number of regressors p ≤ n), we get the usual least squares fit; using k < p
directions produces a reduced regression fit.

Instead of loading on the inner product of xj and the response vector y , φ̂1j =
x ′

j y , one could also load on the correlation between the (standardized) xj and the
response vector y . Zero correlation implies that xj is not part of z1, while large
correlations give xj considerable input in the construction of the first PLS direction.
Note that the change from the inner product to the correlation would not affect the
first PLS direction; all it would do is multiply the direction vector with a scalar.

Algorithm 3.3 in the book by Hastie et al. (2008) gives a detailed descrip-
tion of the calculations behind PLS. One starts centering and standardizing the
p columns of the covariate matrix X to obtain the standardized covariate matrix
X 0 with columns x0

ij = (xij − x j )/sj (for j = 1, 2, . . . , p). The initial n × 1 vec-
tor of fitted values ŷ0 = y has the average response y = ∑n

i=1 yi /n in all its
rows. The K-direction PLS(K) fit is obtained through iterations k = 1, . . . , K as
follows:

1. Calculate the p × 1 vector of loadings φk = (X k−1)′y and the n × 1 vector
of kth directions zk = X k−1φk .

2. Update the PLS(k) fitted values according to ŷk = ŷk−1 + [(zk )
′y/(zk )

′zk ]zk
and orthogonalize the predictor matrix with respect to direction zk by trans-
forming each column according to xk

j = xk−1
j − [(zk )

′xk−1
j /(zk )

′zk ]zk .
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Algorithm 3.3 is simple to program, and an R program for it is given in Section
18.1.1. Alternatively, one can use the function pls in the R package mixOmics.
Use the R help function to learn more about the parameters of this function.

18.1 THREE EXAMPLES

18.1.1 Example 1: Generated Data

We generate an X matrix of n = 400 rows and p = 100 columns. Each of the
columns contains 400 independent N(0,1) realizations, and the 100 columns are
generated independently. The column for the response contains 400 independent
realizations from a normal distribution with mean 6 and standard deviation 2. The
objective of this exercise is threefold: (i) to check that the results of our R program
coincide with the results of the function pls in the R package mixOmics; (ii) to
illustrate that in this example a PLS with just the first (or perhaps the first two)
PLS directions comes very close to the regression that fits the response on all 100
columns. Admittedly, this data matrix X does not represent a very difficult case for
ordinary regression as the columns of the X matrix are orthogonal. For orthogonal
columns, the first PLS direction coincides with the fitted values from the regression
on all 100 columns. So it is not surprising that the R-square from PLS with K = 1
is similar to the R-square in the regression on all 100 columns. (iii) This result also
illustrates that by adding more and more columns, even if they are totally unrelated
to the response, the R-square tends to reach a level that appears quite respectable
(around 22% here). Keep in mind, however, that there is no relationship whatsoever
between the response and the X matrix. All we do here is fitting noise.

## PLS algorithm, following algorithm 3.3 in Hastie et al.
## standardize X’s. PLS depends on scale
## we can’t have too many partial least squares directions (nc)
## otherwise problems
## here we simulate observations

set.seed(1)
nrow=400 ## row dimension of X
ncol=100 ## column dimension of X
nc=2 ## number of PLS directions
nc1=nc+1

Y1=dim(nrow)
X=matrix(nrow=nrow,ncol=ncol)
X1=matrix(nrow=nrow,ncol=ncol)
Y=matrix(nrow=nrow,ncol=nc1)
Z=matrix(nrow=nrow,ncol=nc)
F=matrix(nrow=nrow,ncol=ncol)
FN=matrix(nrow=nrow,ncol=ncol)
me=dim(ncol)
s=dim(ncol)
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## enter data into matrix X1 and column Y1
## data simulation
for (jj in 1:ncol) {
X1[,jj]=rnorm(nrow)
}
Y1=rnorm(nrow)
Y1=2*Y1+6

## standardization
for (j in 1:ncol) {
me[j]=mean(X1[,j])
s[j]=sd(X1[,j])
}
for (j in 1:ncol) {
for (i in 1:nrow) {
X[i,j]=(X1[i,j]-me[j])/s[j]
}
}

## Algorithm 3.3 starts
y=Y1
F=X
Y[,1]=mean(y)*y/y

for (k in 1:nc) {
phi=t(F)%*%y
Z[,k]=F%*%phi
fra=(t(Z[,k])%*%y)/(t(Z[,k])%*%Z[,k])
Y[,k+1]=Y[,k]+fra*Z[,k]
for (j in 1:ncol) {
fru=(t(Z[,k])%*%F[,j])/(t(Z[,k])%*%Z[,k])
FN[,j]=F[,j]-fru*Z[,k]
}
F=FN
}
fp=Y[,nc+1]
## Algorithm 3.3 ends

cor(y,fp)**2

[1] 0.2108954 ## R-square of PLS solution for nc=2

## R-square of PLS solution for nc=1: 0.1815176 (not shown)

ZZ=data.frame(Z[,1:nc])
m1=lm(y~.,data=ZZ)
cor(y,m1$fitted)**2

[1] 0.2108954

## R-square of PLS solution calculated from regression on first
## nc=2 PLS directions: 0.2108954

XX=data.frame(X)
mall=lm(y~.,data=XX)
cor(y,mall$fitted)**2
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[1] 0.2178761

## R-square on all 100 columns 0.2178761

## even with few PLS directions, R**2 of largest model is
## approached very quickly

## comparison with library(mixOmics)
library(mixOmics)
mpls=pls(X1,Y1,ncomp=2,mode="classic")
x1=mpls$variates$X[,1]
x2=mpls$variates$X[,2]
m3=lm(y~x1+x2)
cor(y,m3$fitted)**2

[1] 0.2108954

## R-square of PLS using pls(mixOmics) with nc=2: 0.2108954

fmpls=m3$fitted
## fmpls and fp (and m1$fitted are all the same)

18.1.2 Example 2: Predicting Next Month’s Unemployment Rate of a
Certain State From Past Unemployment Rates of All 50 States

We use the unemployment rates on all n = 50 US states over a period of 416
months (from January 1976 through August 2010). We have looked at this data
set previously (in the contexts of clustering in Chapter 15 and PCA in Chapter
17). Here we treat this data set as a multivariate (50-variate) time series spanning
416 periods. Vector autoregressive (VAR) models are commonly used to predict
vector time series. There one regresses the observations (unemployment rates) of
a certain state (say the first state) on the previous (lagged) unemployment rates
of that state, as well as those of all other states. The order of the VAR tells us
about how many lags to consider. Order 4 implies that we consider the informa-
tion from the previous 4 months. This order is probably sufficient for seasonally
adjusted rates as we can reasonably expect that the memory of the system is
shorter than four periods; in other words, we assume that the previous four unem-
ployment rates summarize the information on the future trajectory. With order 4,
the first row of the response vector y corresponds to month 5 as we are losing
the first four periods because of lags. The first row of the data matrix X contains
unemployment rates at periods 4, 3, 2, and 1. We have 412 (= 416 − 4) rows for
the response vector and the data matrix X . The matrix X contains (50)(4) = 200
columns; four columns of lags for each of the 50 states. If we had taken the previ-
ous 12 lags, the data matrix X would have 416–12 = 404 rows and (50)(12) = 600
columns, resulting in more columns than rows. The response vector for the first
state is regressed on the columns of the data matrix X . A brute force regression on
so many columns (which furthermore are highly multicollinear because lagged
unemployment rates of the same state are similar and because unemployment
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rates from different states are usually alike) would be difficult and impossible
if the number of columns in the X matrix exceeds the number of rows (as in
a model with 12 lags). A principal components regression where one regresses
the response vector on the first several principal components, and a PLS regres-
sion on the first couple of PLS directions are two things to try. The analysis
shown in the following considers the prediction for a single state (here the first
one, Alaska). The calculations need to be repeated for the other states. Note that
the response vector changes for different states, but the data matrix X stays the
same.

A small error (or a large R-square) in the regression expresses the fact that the
explanatory variables are very capable of predicting the unemployment rate for the
next month. The PLS results for the first state (Alaska) shows that the regression
on the first PLS direction already explains 89.1% of the variation. The regression
on the first two PLS directions explains 93.3% of the variation. This is already
very close to the R-square from the regression on all 200 columns of the X matrix
that explains 99.98%. Note that this last R-square is identical to the R-square we
get from the regression on all 200 PLS directions.

library(mixOmics)

nrow=412 ## row dimension of X
ncol=200 ## column dimension of X
nstates=50 ## number of states

X=matrix(nrow=nrow,ncol=ncol)
Y=matrix(nrow=nrow,ncol=nstates)

raw <- read.csv("C:/DataMining/Data/unempstates.csv")
raw[1:3,]

AL AK AZ AR CA CO CT DE FL GA HI ID IL IN IA KS KY LA ME
1 6.4 7.1 10.5 7.3 9.3 5.8 9.4 7.7 10.0 8.3 9.9 5.5 6.4 6.9 4.2 4.3 5.7 6.2 8.8
2 6.3 7.0 10.3 7.2 9.1 5.7 9.3 7.8 9.8 8.2 9.8 5.4 6.4 6.6 4.2 4.2 5.6 6.2 8.6
3 6.1 7.0 10.0 7.1 9.0 5.6 9.2 7.9 9.5 8.1 9.6 5.4 6.4 6.4 4.1 4.2 5.5 6.2 8.5

MD MA MI MN MS MO MT NE NV NH NJ NM NY NC ND OH OK OR
1 6.9 11.1 10.0 6.2 7.0 5.8 5.8 3.6 9.8 7.2 10.5 8.9 10.2 6.7 3.2 8.3 6.4 10.1
2 6.7 10.9 9.9 6.0 6.8 5.8 5.7 3.5 9.5 7.1 10.4 8.8 10.2 6.5 3.3 8.2 6.3 9.8
3 6.6 10.6 9.8 5.8 6.6 5.8 5.7 3.3 9.3 7.0 10.4 8.7 10.1 6.3 3.3 8.0 6.1 9.5

PA RI SC SD TN TX UT VT VA WA WV WI WY
1 8.1 7.8 7.6 3.6 5.9 5.9 6.1 8.8 6.2 8.7 8.3 5.9 4.2
2 8.1 7.8 7.4 3.5 5.9 5.9 5.9 8.7 6.1 8.7 8.1 5.7 4.1
3 8.0 7.9 7.2 3.4 5.9 5.8 5.7 8.6 5.9 8.7 7.9 5.6 4.0

X=matrix(nrow=412,ncol=200)
Y=matrix(nrow=412,ncol=50)

for (j in 1:50) {
for (i in 1:412) {
Y[i,j]=raw[i+4,j]
}
}

for (j in 1:50) {
for (i in 1:412) {
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X[i,j]=raw[i+3,j]
X[i,j+50]=raw[i+2,j]
X[i,j+100]=raw[i+1,j]
X[i,j+150]=raw[i,j]
}
}

nc=1 ## number of PLS directions
## pls on nc components
mpls=pls(X,Y[,1],ncomp=nc,mode="classic")
m1=lm(Y[,1]~.,data.frame(mpls$variates$X))
summary(m1)
cor(Y[,1],m1$fitted)**2

[1] 0.8913555

nc=2 ## number of PLS directions
## pls on nc components
mpls=pls(X,Y[,1],ncomp=nc,mode="classic")
m2=lm(Y[,1]~.,data.frame(mpls$variates$X))
summary(m2)
cor(Y[,1],m2$fitted)**2

[1] 0.9326079

nc=3 ## number of PLS directions
## pls on nc components
mpls=pls(X,Y[,1],ncomp=nc,mode="classic")
m3=lm(Y[,1]~.,data.frame(mpls$variates$X))
summary(m3)
cor(Y[,1],m3$fitted)**2

[1] 0.9649273

## regression on all columns of X
mreg=lm(Y[,1]~.,data.frame(X))
mreg
cor(Y[,1],mreg$fitted)**2

[1] 0.9997558

18.1.3 Example 3: Predicting Next Month’s Unemployment Rate.
Comparing Several Methods in Terms of Their Out-of-Sample
Prediction Performance

In the previous example, we assessed the model fit by looking at the R-square.
It is not surprising that a model with many estimated coefficients fits well. But,
assessing the out-of-sample prediction performance is different from assessing the
in-sample fit, and this is what we do in the next example.

We investigate the performance of the following methods:

Univariate AR(4) model fit to individual series. In this method, the current
unemployment rate is regressed on its previous four lags. This is done sepa-
rately for each state. Univariate AR models are commonly used in forecasting,
where one relates the current observation to observations from previous peri-
ods. For discussion, see Box et al. (1994) or Abraham and Ledolter (1983).
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Multivariate VAR(4). In this method, the current unemployment rate of one
state is regressed on its previous four lags and the four lags from all other
states. This amounts to a regression on 200 predictors. In total, 50 regres-
sions (one for each state) onto the same set of 200 predictors have to be
carried out. Component-by-component estimation is equivalent to the joint
least squares estimation, even for a general covariance matrix of the error
terms; see Johnson and Wichern (1988, Chapter 7).

VAR(4) with LASSO constraints. A problem with fitting a regression on so
many similar predictor variables is that many predictor variables (perhaps
most) are not needed. Regression methods that constrain the magnitudes of
the estimates may help overcome the problem of estimating too many unim-
portant coefficients. LASSO methods under several constraint assumptions
are evaluated. See Chapter 6 for a discussion of LASSO.

PCA regression and PLS. The matrix of predictors is high-dimensional and its
columns are highly multicollinear. This is because lagged unemployment rates
of the same state are similar and unemployment rates from different states are
alike. Principal components regression where we regress the response vector
on the first 10 (200) principal components, and PLS regression on the first
10 (100) PLS directions are being considered.

Forecast evaluations. We evaluate the forecasts on 25 randomly selected time
periods (the evaluation sample). The models are estimated on the remaining 387
observations (the training sample). Models are fit for all 50 states, resulting in
(25)(50) one-step-ahead forecast errors for each studied method. Methods are eval-
uated on the root mean square error (RMSE) that is being calculated from the
(25)(50) one-step-ahead forecast errors. The random selection of the evaluation
and training samples is repeated 50 times, and box-plots of the root mean square
forecast errors are prepared.

Discussion. The R program on the book’s webpage is used for all calculations. The
results are summarized in the box plots in Figure 18.1. The following conclusions
can be made.

1. The univariate AR(4) model, the model that probably comes to mind first
and a model that is rather easy to estimate (a regression on the previous four
lags), performs quite well. Its average RMSE is about 0.13 percentage points.
This says that if the true unemployment rate is 5%, the predictions from this
model could be off by about ±(2)(0.13) = 0.26 percentage points.

2. The VAR(4) model with its regression on 200 (quite a few!) predictors per-
forms worse; its average RMSE is 0.15. However, one can see that LASSO
restrictions will improve the forecast performance. LASSO with s = 0.25
(i.e., the L1 norm of the LASSO estimates is one-quarter of the L1 norm of
the unrestricted least squares estimates) leads to an average RMSE of 0.11.
This illustrates the power of a regularization estimation approach that “zeros
out” many of the unwanted coefficients.
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Figure 18.1 Box plots of root mean square forecast errors: Predicting the levels of unem-
ployment rates.

3. The PCA regression on the first 10 principal components is rather bad; its
average RMSE is 0.33. This implies that we would need a lot more principal
components to predict the unemployment rate reliably. Using 200 principal
components (i.e., all of them) gives us the same box-plot as the VAR(4)
model without LASSO restrictions. This is comforting to see as we know
that a regression on all principal components is identical to a regression on
all predictors.

4. The forecast performance of PLS on the first 10 PLS directions (average
RMSE = 0.165) is considerably better than that of the PCA regression on
10 components, but it is still worse than that of the simple univariate AR(4).
PLS on 100 PLS directions has already approximated the VAR(4) results
without any LASSO regularization.

5. We learn that neither PCA regression nor PLS can compete with the VAR(4)
model that uses some LASSO regularization.

6. Why does PCA regression perform so poorly? Take the extreme case when
regressing the unemployment rates on just the first principal component. For
nonstationary data, as we have in this illustration, the loadings on the first
principal component represent the average trend in the data; see the discus-
sion in Section 17.2. A regression on the average trend will fit individual
series poorly, certainly much poorer than an approach that relates the current
value of a certain state to previous values for that state (as autoregressive
models do). So it is not surprising that even with 10 principal components,
the results of principal components regression are rather poor. The results
should change when predicting successive differences (or changes), yt − yt−1,
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Figure 18.2 Box plots of root mean square forecast errors: Predicting the changes of
unemployment rates.

as differencing removes the trend component and makes the differences sta-
tionary. Stock and Watson mention that for PCA regression to work well, the
columns of the matrix X should be stationary.

7. We repeat the analysis for first successive differences. When fitting models
on first successive differences and when predicting changes, principal compo-
nents regression performs very well; see the box plots shown in Figure 18.2.
Successive first differences of unemployment rates are virtually independent,
and averages of first differences are about zero, for all states. The naı̈ve pre-
dictor (the one that uses zero as prediction for future changes and does so
for every state) performs quite well (average RMSE is 0.155). This is quite
different from the analysis of levels. There the naı̈ve predictor that averages
the current levels of the 50 states to predict the future level of a state per-
forms very poorly (average RMSE is 1.724). This is yet another explanation
why the regression on the first few principal components fails if we try to
predict nonstationary levels. For PCA regression to work, we need to assume
that the series are stationary.

The R programs for predicting levels and changes of the US unemployment
rates can be found on the web page that accompanies this book.
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CHAPTER 19

Text as Data: Text Mining
and Sentiment Analysis1

Text is a vast source of data for business. Examples are earnings announce-
ments, communications to shareholders, press releases, restaurant reviews, political
speeches in Congress, Supreme Court opinions, and so on.

Text data is extremely high dimensional. The analysis of phrase counts from text
documents is the current state of the art. The “bag of words” representation of text
assigns frequencies to words or combinations of words. However, considerable
preprocessing of text is needed before one can obtain frequency information on
words and before one can start the statistical analysis. Information retrieval and the
appropriate “tokenization” of the information are very important.

The first step when faced with a raw text document is to stem the words. This
means that one cuts words to their root: for example, “tax” from taxing, taxes, and
taxation. The Porter stemming algorithm, named after Martin Porter, has become
the English standard. It is an algorithm for removing common morphological and
inflexional endings from English words.

The next step is to search the text documents for a list of stop words containing
irrelevant words marked for removal. If, and, but, who, what, the, they, their, a,
or, and so on are examples of stop words that need to be removed. But one needs
to be careful because one person’s stop word is another’s key term.

Consider the following passage from Shakespeare’s “As You Like It”:

All the world’s a stage, and all the men and women merely players:
they have their exits and their entrances; and one man in his time plays
many parts, his acts being seven ages.

What the statistician sees are “cleaned up” words and their frequencies:

world stage men women play exit entrance time part act seven age
1 1 2 1 2 1 1 1 1 1 1 1

1Chapter 19 on the analysis of text data draws heavily on the research of Professor Matt Taddy of
Chicago’s Booth School of Business. His contribution is most gratefully acknowledged.

Data Mining and Business Analytics with R, First Edition. Johannes Ledolter.
 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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Also, one usually removes words that are extremely rare. Imagine one wants
to compare all of Shakespeare’s plays. A play is referred to as a document, and
the set of all plays is referred to as the corpus. If a certain term occurs only once,
it will not be useful for comparing documents. A reasonable rule removes words
with relative frequencies below 0.5%.

More sophisticated removal rules have been considered in the literature. For
example, in a corpus of n documents (e.g., all of Shakespeare’s plays), one can base
the screening of words on the tf-idf (term frequency/inverse document frequency)
score,

tf-idf = fij × log

(
n

dj

)
,

where the term frequency, fij , is the (relative) frequency of word j in document i
(its frequency count divided by the total number of words in that document), n is
the number of documents, dj is the number of documents containing word j , and
log(n/dj ) is the inverse document frequency (idf). One omits all words with tf-idf
below a certain threshold.

EXAMPLE 19.1 Consider a document containing 10,000 words wherein the
word donkey appears 300 times. Following the earlier definition, the term frequency
(tf) for donkey is (300/10, 000) = 0.03. Now, assume we have 1,000 documents
and donkey appears in 10 of these. Then, its inverse document frequency (idf) is
calculated as log (1000/10) = 2. The tf-idf score is the product of these quantities:
0.03 × 2 = 0.06.

Several other preprocessing steps can be used to get a meaningful list of words
and their counts (frequencies). Words can be single words, or bigrams of words.
Bigrams are groups of two adjacent words, and such bigrams are commonly used
as the basis for the statistical analysis of text. Bigrams can be extended to trigrams
(three adjacent words) and, more general, n-grams, which are sequences of n
adjacent words.

19.1 INVERSE MULTINOMIAL LOGISTIC REGRESSION

In the following example, we analyze text information that comes from restaurant
reviews. The text from a corpus of 6166 restaurant reviews was reduced to 2640
bigrams (Taddy, 2012a, 2012b). We treat the 2640 bigrams as the g = 2640 possi-
ble outcome categories of a multinomial distribution. Now consider a certain review
(i.e., review 1). Assume that this review has a total of n1 occurrences of these 2640
bigrams. These n1 = n11 + n12 + · · · + n1,g=2640 occurrences represent n11 occur-
rences for bigram 1, n12 occurrences for bigram 2, . . . , n1,g=2640 occurrences for
bigram 2640. Fixing the row (document, here the review) sum of occurrences, the
g × 1 outcome vector of counts follows a multinomial distribution with parameter
n1 and g = 2640 probabilities that sum to one. Each of these 2640 probabilities
is modeled as a function of covariates. In the restaurant review example, we have
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just one covariate x , namely the overall restaurant rating on a scale from 1 to
5. But there may be more covariates such as ratings on multiple categories that
relate to food, service, and attractiveness of the restaurant, the price of a meal, the
restaurant’s location, and so on.

In multinomial logistic regression (see Chapter 11), we model the probabilities
through

pk = P [y = k ] = exp(αk + xβk )∑g
h=1 exp(αh + xβh)

, for k = 1, 2, . . . , g = 2640.

One pair (αk , βk ) of the parameters can be set to zero without loss of generality as
the multinomial probabilities must add to one. Note that the multinomial logistic
regression representation leads to a very large number of parameters; in our case,
there are 2(g − 1) = 5278 coefficients that need to be estimated; and this is for a
single covariate. It becomes clear that one needs penalty-based estimation/variable
selection methods for the estimation of these parameters. The routine mnlm in the
R library textir does just that. It may take the program a few minutes (sometimes
also longer) to get the estimation done, especially if there is a large number of
bigrams and many parameters that need to be estimated.

After obtaining the estimates, we use the fitting results for the inverse prediction
of x . Taddy (2012a) explains how to obtain the inverse prediction of the covariate
x for each review with given word count distribution. For the reviews in our
estimation sample, this inverse prediction provides us with the fitted (in-sample
prediction) rating. Imagine now that you are reading the text of a new review,
but you do not know the rating. You would want a method that can take the text
information and give you a prediction of the unknown rating. This is exactly what
the inverse multinomial logistic regression can do.

There are many other applications. Consider one on political sentiment stud-
ied by Gentzkow and Shapiro (2010) in their paper “What drives media slant?
Evidence from U.S. daily newspapers”. Gentzkow and Shapiro analyzed text infor-
mation in political speeches made by members of Congress. They summarized the
speeches of 529 members of Congress in form of trigrams and their associated
frequencies. Furthermore, they collected covariates on each speaker, among them
the Republican vote percentage in the speaker’s district from the last election. This
is an important variable because it represents the political ideology (the conser-
vative/liberal orientation) of the speaker. Imagine now that you are given another
speech (or an article in a newspaper), but that you do not know its author and
his/her political ideology. From the frequency distribution of the speech’s trigrams,
you want to infer the political sentiment of the speech. Again, as we will show in
Section 19.3, this is can be achieved with the inverse multinomial logistic regression
model.

We use the routine mnlm in the R package textir for the analysis. Details of the
statistical methodology are discussed in the paper by Taddy (2012a).
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19.2 EXAMPLE 1: RESTAURANT REVIEWS

We are given 6166 restaurant reviews, with counts on 2640 bigrams. Each review
has an average of 90 words. Furthermore, each review is accompanied by several
ratings on a five star scale: an overall rating, and separate ratings for food, service,
value, and atmosphere. For the following discussion, we use only the overall rating.
This data set is taken from the paper by Taddy (2012a), and the analysis that follows
is described in his paper. The data are given in the object we8there in the R package
textir.

Imagine that you are sent the text of a new review, but not its overall rating.
How would you predict the rating from just the text?

Here are two examples from among the 6166 restaurant reviews. The first num-
ber in bold font at the end of the review represents the overall rating.

Excellent: Waffle House, Bossier City LA

I normally would not review a Waffle House, but this one deserves it. The work-
ers, Amanda, Amy, Cherry, James, and J.D. were the most pleasant crew I
have seen. Although it was only lunch, B.L.T., and chili, it was great. The best
thing was the 1950’s rock and roll music, not too loud not too soft. This is a
rare exception to what we all think a Waffle House is. Keep up the good work.
[5: 5555]

Terrible: Sartin’s Seafood, Nassau Bay TX

Had a very rude waitress and the manager was not nice either. [1: 1115]

An R program for carrying out the text analysis is listed below. We have anno-
tated the output and explain the various steps of the analysis. The variable predinv
contains the inverse prediction of x . The ROC analysis (see Chapter 8 for details)
tells us how to best use the inverse prediction when rating a restaurant.

library(textir)
data(we8there) ## 6166 reviews and 2640 bigrams

dim(we8thereCounts)

[1] 6166 2640

dimnames(we8thereCounts)

$Docs
[1] "1" "2" "5" "11" "12" "13" "14" "15" "17" "18"
[11] "19" "20" "21" "22" "23" "24" "25" "26" "27" "28"
. . .

$Terms
[1] "veri good" "go back" "dine room"
[4] "dine experi" "great food" "food great"
[7] "realli good" "ice cream" "high recommend"
[10] "great place" "food servic" "look like"
. . .
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dim(we8thereRatings)

[1] 6166 5

we8thereRatings[1:3,]
## ratings (restaurants ordered on overall rating from 5 to 1)

Food Service Value Atmosphere Overall
1 5 5 5 5 5
2 5 5 5 5 5
5 5 5 4 4 5

as.matrix(we8thereCounts)
as.matrix(we8thereCounts)[12,400] ## count for bigram 400 in review 12

## get to know what’s in the matrix

g1=min(as.matrix(we8thereCounts)[,]) ## min count over reviews/bigrams
g2=max(as.matrix(we8thereCounts)[,]) ## max count over reviews/bigrams
g1
g2
## a certain bigram in a certain review was mentioned 13 times

hh=as.matrix(we8thereCounts)[,1000]
hh
## here we look at the frequencies of the bigram in column 1000
## the data are extremely sparce

overall=as.matrix(we8thereRatings[,5])
## overall rating

## we determine frequencies of the 2640 different bigrams
## this will take some time
nn=2640
cowords=dim(nn)
for (i in 1:nn) {
cowords[i]=sum(as.matrix(we8thereCounts)[,i])
}
cowords
cowords[7]

[1] 251
## "realli good" mentioned 251 times
## 10 times is the minimum

plot(sort(cowords,decreasing=TRUE))

## analysis per review

## we determine the frequencies of bigrams per review

## this will take some time

nn=6166

coreview=dim(nn)

for (i in 1:nn) {

coreview[i]=sum(as.matrix(we8thereCounts)[i,])

}

plot(sort(coreview,decreasing=TRUE))
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## Multinomial logistic regression and fitted reduction

we8mnlm=mnlm(we8thereCounts,overall,bins=5)

## bins: for faster inference if covariates are factors

## covariate is a factor with 5 levels

we8mnlm

we8mnlm$intercept ## estimates of alphas

we8mnlm$loadings ## estimates of betas

fitted(we8mnlm)

as.matrix(fitted(we8mnlm))[1,]

## fitted counts for first review
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## following provides fitted multinomial probabilities

pred=predict(we8mnlm,overall,type="response")

pred[1,] ## predicted multinomial probs for review 1

sum(pred[1,]) ## must add to one

## following predicts inverse prediction (fitted reduction)

predinv=predict(we8mnlm,we8thereCounts,type="reduction")

predinv[1:10] ## prints predicted ratings for first 10 reviews

plot(predinv)

plot(predinv~overall)

corr(predinv,overall)

[,1]
[1,] 0.706245

boxplot(predinv~overall)

## procedure works. Predicted ratings increase with actual

## ratings. Question of cutoff. Which cutoff to use for

## excellent review?

1 2 3 4 5

–1
0

1
2

## ROC curve for classification of y with p

roc <- function(p,y){

y <- factor(y)

n <- length(p)

p <- as.vector(p)

Q <- p > matrix(rep(seq(0,1,length=500),n),ncol=500,

+ byrow=TRUE)
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fp <- colSums((y==levels(y)[1])*Q)/sum(y==levels(y)[1])

tp <- colSums((y==levels(y)[2])*Q)/sum(y==levels(y)[2])

plot(fp, tp, xlab="1-Specificity", ylab="Sensitivity")

abline(a=0,b=1,lty=2,col=8)

}

c2=overall==4

c3=overall==5

c=c2+c3

min=min(predinv)

max=max(predinv)

pp=(predinv-min)/(max-min)

## plot of ROC curve

roc(p=pp, y=c)
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cut <- 0

truepos <- c==1 & predinv>=cut

trueneg <- c==0 & predinv<cut

## sensitivity (predict good review if review is good)

sum(truepos)/sum(c==1)

[1] 0.8938914

sum(trueneg)/sum(c==0)

[1] 0.8098511
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## Zero may be a good cutoff.

## Sensitivity (true positive rate) of 0.89

## False positive rate of 1 – 0.81 = 0.19

## If inverse prediction > 0, conclude overall quality

## rating of 4 or 5.

The score on the inverse prediction helps us assess the overall quality rating
of a review. The box plots of predinv against the overall rating shows this quite
clearly. The ROC analysis (for details, see Chapter 8) tells us about a reason-
able cutoff on predinv that separates good reviews (those with overall ratings 4
and 5) from negative reviews (3 or lower). A rule that classifies a review as
positive if the inverse prediction is larger than 0 and as negative if the inverse
prediction is smaller than 0 makes for an excellent decision rule. Eighty nine
percent of positive reviews are identified as positive, and 81 percent of negative
reviews are identified as negative. One can use this rule to classify new incom-
ing reviews. Using its bigram counts, we determine its inverse prediction. If the
inverse prediction is greater than 0, we classify the new review as good (rating 4 or
higher).

19.3 EXAMPLE 2: POLITICAL SENTIMENT

We are given text information on political speeches made by members of Congress.
Gentzkow and Shapiro (2010) summarized the text of 529 members of Congress
through 1000 word trigrams and their associated frequencies. Furthermore, they
collected the Republican vote percentage in the speaker’s district from the last
election; this is an important variable as it represents the political ideology (conser-
vative/liberal leaning) of the speaker. The data are given in the object congress109
in the R package textir. We have annotated the output and have explained the
various steps of the analysis.

library(textir)
data(congress109) ## 529 speakers 1000 trigrams
dimnames(congress109Counts)
as.matrix(congress109Counts)[1,] ## Chris Cannon’s counts
as.matrix(congress109Counts)[,1] ## "gifted.talented.student" counts
congress109Ideology
as.matrix(congress109Ideology)[,1]
repshare=as.matrix(congress109Ideology[,5])
repshare ## Republican vote share

## get to know what is in the matrix

g1=min(as.matrix(congress109Counts)[,])
g2=max(as.matrix(congress109Counts)[,])
g1
g2
## a certain trigram was mentioned by a certain speaker 631 times
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hh=as.matrix(congress109Counts)[,1000]
hh
## here we look at the frequencies of bigram in column 1000

## Multinomial logistic regression and fitted reduction
congmnlm=mnlm(congress109Counts,repshare)
congmnlm
congmnlm$intercept ## estimates of alphas
congmnlm$loadings ## estimates of betas
fitted(congmnlm)
as.matrix(fitted(congmnlm))[1,] ## fitted counts for first rep
maxf=max(as.matrix(fitted(congmnlm))[1,])
maxf
maxc=max(as.matrix(congress109Counts)[1,])
maxc

## following provides fitted multinomial probabilities
pred=predict(congmnlm,repshare,type="response")
pred[1,] ## predicted multinomial probs for first rep

## following predicts inverse prediction (fitted reduction)
predinv=predict(congmnlm,congress109Counts,type="reduction")
predinv[1:10] ## prints predicted ratings for first 10 reps

[1] 0.6347460 0.6592663 0.2897289 0.1356864 0.5949578 0.3614053 0.6640827
[8] 0.3546728 0.3819283 0.5861080

plot(predinv~repshare)
plot(repshare~predinv)
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corr(predinv,repshare)

[,1]
[1,] 0.6748002

model1=lm(repshare~predinv)

model1
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Call:
lm(formula = repshare ~ predinv)

Coefficients:
(Intercept) predinv

0.4184 0.3120

plot(repshare~predinv)

abline(model1)
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A scatter plot of the Republican vote share on the inverse prediction, with the
least squares fit added, shows a linear relationship. Assume a new text leads to an
inverse prediction of 0. This value implies that the unknown Republican vote share
is about 0.4. We would conclude that this text comes from the liberal side. An
inverse prediction of 0.6 implies a Republican vote share of about 0.6; this would
tell us that the text comes from the conservative side. A threshold of about 0.3 on
the inverse prediction represents a good cutoff for deciding whether a certain text
has come from the conservative side.

APPENDIX 19.A RELATIONSHIP BETWEEN THE GENTZKOW/
SHAPIRO ESTIMATE OF ‘‘SLANT’’ AND PARTIAL LEAST SQUARES

The analysis conducted by Gentzkow and Shapiro is actually slightly different.
They consider an ordinary regression (not a multinomial logistic regression) of the
relative frequencies of trigrams on the vote-shares that they then use, in a second
step, to determine the estimate of the political “slant” of each representative.
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Their approach is as follows:
Consider the matrix of phrase frequencies F = {fij }, where i = 1, 2, . . . , n

(number of rows/representatives) and j = 1, 2, . . . , p (number of columns/trigrams).
The fij are relative frequencies, with counts normalized by the row sum. For
each trigram regress the phrase frequencies (column j of the F matrix, which
we denote here by fj ) onto the covariate x (here the Republican vote share),
fj = aj + bj x + ε, and obtain the intercept aj and slope bj (for j = 1, 2, . . . , p).
Then subtract the intercept aj from each column of frequencies in F , and for each
row i , regress the row of this new matrix, fij − aj , on the bj . The estimate of xi
in the regression fij − aj = xi bj + εj is the slant of row (representative) i ; from
elementary regression results, we know that the slants are given by

x̂i =
∑p

j=1 bj (fij − aj )∑p
j=1 (bj )

2
, for i = 1, 2, . . . , n.

It is not difficult to show (Taddy, 2012a) that for standardized relative frequen-
cies (with mean 0 and variance 1), the slants are the fitted values in a partial least
squares regression of the vector x (the Republican vote share) on the matrix of
phrase frequencies F = {fij }, using just the first partial least squares direction. See
Chapter 18 for a discussion of partial least squares.

We have written an R program for estimating the slant as originally proposed
by Gentzkow/Shapiro. We carry out two versions of the slant. One uses the unstan-
dardized relative frequencies, while the other standardizes the relative frequencies
to have mean 0 and variance 1. We illustrate that for relative frequencies that have
been standardized, the approach by Gentzkow/Shapiro and the PLS regression on
the first PLS direction leads to identical results. We use the congress109 data for
illustration.

library(textir)

data(congress109) ## data form Gentzkow/Shapiro

## Gentzkow/Shapiro slant (unstandardized relative

## frequencies)

a=dim(529)

b=dim(529)

d=dim(1000)

hh=as.matrix(freq(congress109Counts))

x=congress109Ideology$repshare

for (j in 1:1000) {

m1=lm(hh[,j]~x)

a[j]=m1$coef[1]

b[j]=m1$coef[2]

}

for (i in 1:529) {

d[i]=sum((hh[i,]-a)*b)

}
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cor(d,x)**2

[1] 0.3723954

## Gentzkow/Shapiro slant (standardized relative frequencies)

hh=as.matrix(freq(congress109Counts))

for (j in 1:1000) {

hh[,j]=(hh[,j]-mean(hh[,j]))/sd(hh[,j])

}

x=congress109Ideology$repshare

for (j in 1:1000) {

m1=lm(hh[,j]~x)

a[j]=m1$coef[1]

b[j]=m1$coef[2]

}

for (i in 1:529) {

d[i]=sum((hh[i,]-a)*b)

}

cor(d,x)**2

[1] 0.5665803

## We get a higher correlation beween the slant and the
## covariate x (Republican vote share). Standardization
## helps!!

## Using PLS (textir) on first partial least squares direction

## scaling FALSE means unstandardized relative frequencies

## are used

library(textir)

fit=pls(freq(congress109Counts),

+ congress109Ideology$repshare,scale=FALSE,K=1)

cor(congress109Ideology$repshare,fit$fitted)**2

[1,] 0.5735825
## NOT the same as slant on un-standardized relative
## frequencies

## Using PLS (textir) on first partial least squares direction

## scaling TRUE means standardized relative frequencies

## mean zero and variance 1

library(textir)

fit=pls(freq(congress109Counts),congress109Ideology$repshare,

+ scale=TRUE,K=1)

cor(congress109Ideology$repshare,fit$fitted)**2

[1,] 0.5665803
## SAME as slant on standardized relative frequencies

## Using PLS (mixOmics) on first partial least squares

## direction
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## standardized relative frequencies (mean zero and

## variance 1)

library(mixOmics)

mpls=pls(freq(congress109Counts),congress109Ideology$repshare,

+ ncomp=1,mode="classic",freqCut=0.000001,uniqueCut

+ =0.000001)

x1=mpls$variates$X[,1]

m1=lm(congress109Ideology$repshare~x1)

fmpls=m1$fitted

cor(x,m1$fitted)**2

[1] 0.5665803
## Same as with textir (with scaling TRUE)
## Same as slant on standardized relative frequencies

This shows that with standardized relative frequencies, the slants and the fitted
values from PLS on the first partial least squares direction are identical.

Note that the equivalence holds for standardized relative word frequencies, but
not for nonstandardized relative frequencies. The slants that use nonstandardized
relative frequencies are not the same as the fitted values from PLS(1) on nonstan-
dardized relative frequencies.

The PLS approach (which obtains an estimate of the slant, the fitted value of the
covariate, from the results of an ordinary regression of phrase frequencies on the
covariate) and the inverse multinomial logistic regression approach (which starts
from the notion that language is caused by ideology and then inversely predicts
the ideology) have much in common.

REFERENCES

Gentzkow, M. and Shapiro, J.: What drives media slant? Evidence from U.S. daily newspa-
pers. Econometrica , Vol. 78 (2010), 35–71.

Taddy, M.: Multinomial inverse regression for text analysis. 2012a. Available at
http://arxiv.org/abs/1012.2098. Accessed 2013 Jan 18. To appear in Journal of American
Statistical Association, Vol. 108 (2013).

Taddy, M.: textir (R package), 2012b.

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 20

Network Data

Network data consist of nodes (also called vertices; such as individuals in a social
network, or companies in a trade network) and edges (the links between them).
The links describe the presence or absence of connections among the nodes. Links
can be either directed or undirected. A connection from node x to node y is called
directed if y is a direct successor of x ; in this case the edge from x to y includes
an arrow that points to y . For example, student x in a social network may declare
student y as his friend (a directed friendship connection pointing from x to y),
while student y may not indicate a friendship with student x , implying the absence
of an edge pointing from y to x . In a directed network, the graph between x and y
is defined as an ordered pair. This differs from an undirected graph, where x and
y are connected mutual friends (if I am your friend, then you are also my friend).
In an undirected network, the graph between x and y is defined as an unordered
pair, and the arrows on either side of the edge between x and y can be omitted.
Covariate information on the nodes (i.e., characteristics on individuals in a social
network, such as gender, age, and race) may affect the absence or presence of
connections among the nodes, and such information needs to be incorporated into
the analysis of network data. Finding out how a certain covariate affects the links
between nodes may be an important aspect of the investigation.

Many good computer programs for visualizing networks are available, such as
the igraph and statnet packages in R, as well as stand-alone packages such as
Gephi and Pajek. Measures of network connectivity can be calculated to summa-
rize important properties of the network, and formal statistical models, similar to
but much more complicated than regression models, can be fitted to the data.

A network of nodes and their interconnections can be represented with an adja-
cency matrix. Below, we list the adjacency matrix A for a directed graph with three
nodes; the relationships among the nodes are expressed with directed arrows. For
a directed network, the adjacency matrix need not be symmetric. The first node in
our illustration points to the second node and to the third node. The second node

Data Mining and Business Analytics with R, First Edition. Johannes Ledolter.
 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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points to the first node, and the third node points to the second node.

A =



0 1 1
1 0 0
0 1 0




library(igraph)

m=matrix(nrow=3,ncol=3)

m[1,1]=0

m[1,2]=1

m[1,3]=1

m[2,1]=1

m[2,2]=0

m[2,3]=0

m[3,1]=0

m[3,2]=1

m[3,3]=0

m

[,1] [,2] [,3]
[1,] 0 1 1
[2,] 1 0 0
[3,] 0 1 0

lab=c(1,2,3)

object <- graph.adjacency(m,mode="directed")

set.seed(1)

plot(object,vertex.label=lab)

3

2

1
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20.1 EXAMPLE 1: MARRIAGE AND POWER IN FIFTEENTH CENTURY
FLORENCE

Early Renaissance Florence was ruled by an oligarchy of powerful families. By the
fifteenth century, the Medicis emerged supreme, and the Medici Bank became the
largest in Europe. How did the Medici win?

Political ties were established via marriage. The adjacency matrix for the 16 most
powerful families in Florence shown in the following includes a one whenever
two families were connected in marriage. This adjacency matrix represents an
undirected graph. A graphical representation of the network, created with the R
package igraph, is shown.

The data set analyzed here has been compiled from extensive data collected
by John Padgett. The data includes information on families who were locked in
a struggle for political control of the city of Florence around 1430. Two fac-
tions were dominant in this struggle: one revolved around the infamous Medi-
cis, the other around the powerful Strozzis. The data can be downloaded from
http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/ucidata.htm#padgett. The papers
by Padgett (1994), Padgett and Ansel (1993), Breiger and Pattison (1986), and
Wasserman and Faust (1994) provide a detailed discussion of this fascinating data
set that has been constructed from historical documents. All we see here is a simple
adjacency matrix of zeros and ones, but not the enormous research effort that must
have gone into constructing this matrix.

library(igraph) ## load the package
## read the data
florence <- as.matrix(read.csv("C:/DataMining/Data/firenze.csv"))
florence

Acciaiuoli Albizzi Barbadori Bischeri Castellani Ginori Guadagni
Lamberteschi Medici Pazzi Peruzzi Pucci Ridolfi Salviati Strozzi Tornabuoni
Acciaiuoli 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Albizzi 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
Barbadori 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
Bischeri 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
Castellani 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
Ginori 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Guadagni 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
Lamberteschi 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Medici 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1
Pazzi 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Peruzzi 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0
Pucci 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ridolfi 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1
Salviati 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
Strozzi 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0
Tornabuoni 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0

marriage <- graph.adjacency(florence,mode="undirected", diag=FALSE)
## use the help function to understand the options for the graph
set.seed(1)
plot(marriage,layout=layout.fruchterman.reingold,
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+ vertex.label=V(marriage)$name,vertex.color="red",
+ vertex.label.color="black",vertex.frame.color=0,
+ vertex.label.cex=1.5)

Acciaiuoli

Albizzi

Barbadori

Bischeri

Castellani

Ginori

Guadagni

Lamberteschi

Medici

Pazzi

Peruzzi

Pucci

Ridolfi

Salviati

Strozzi
Tornabuoni

The presence and absence of network links can be used to measure network
connectivity and “social importance.” A node’s degree in an undirected network is
defined as its number of edges to other nodes. Medicis are connected. There are
connections (edges) between the Medici and six other families, hence the degree is
6 for the Medici. The Lambertschi family, on the other hand, is connected to only
one other family (the Guadagni); the Lambertschi family has degree one.

data.frame(V(marriage)$name,degree(marriage))

V.marriage..name degree.marriage.
1 Acciaiuoli 1
2 Albizzi 3
3 Barbadori 2
4 Bischeri 3
5 Castellani 3
6 Ginori 1
7 Guadagni 4
8 Lamberteschi 1
9 Medici 6
10 Pazzi 1
11 Peruzzi 3
12 Pucci 0
13 Ridolfi 3
14 Salviati 2
15 Strozzi 4
16 Tornabuoni 3

A deeper measure of network structure is obtained through betweenness.
Betweenness is a centrality measure of a node (or vertex) within a graph. Nodes
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that occur on many shortest paths between other nodes have higher betweenness
than those that do not.

For an undirected graph with n nodes (vertices), the betweenness of node k is
computed as follows:

1. For each unordered pair of nodes (i , j ), compute all shortest paths between
them. The shortest path is the path with the fewest steps between node i and
node j .

2. For each unordered pair of nodes (i , j ), determine the fraction of shortest
paths that pass through the node in question (here, node k ).

3. Sum this fraction over all unordered pairs of nodes (i , j ).

4. Say sk (i , j ) is the proportion of shortest paths between node i and node j
containing node k . Then,

betweenness(k) =
∑

(i<j ):i �=j ,k /∈{i ,j }
sk (i , j ).

As in degree, betweenness measures network connectivity of one node relative
to others. Betweenness may be normalized, dividing the earlier expression by the
number of unordered pairs of nodes not including k , which for an undirected graph
is (n –1)(n –2)/2. For illustration, consider an undirected star graph. This is a graph
with a center node that is connected to all other nodes, while none of the other
nodes (the leaves in the star graph) are connected among themselves. Each shortest
path between two star points goes through the center point; the betweenness of the
center point is (n –1)(n –2)/2 (or 1, if normalized). The leaves in a star graph are
not contained in shortest paths, and have betweenness 0.

Betweenness measures how much influence a node has over connections between
other nodes. It measures total graph connectivity, rather than counting next door
neighbors.

Comment: In directed graphs, the degree of a node is the number of links that point
to or from the node. In directed graphs, betweenness(k) = ∑

(i ,j ):i �=j ,k /∈{i ,j }sk (i , j ),
summing over all ordered pairs of nodes as the shortest path from node i to node
j may be different from the shortest path from node j to node i . Normalization is
achieved by dividing the sum by the number of ordered pairs of nodes not including
k , which is (n –1)(n –2).

Below, we illustrate betweenness for the nodes in the undirected network among
the 16 families in Medevial Florence. Take Peruzzi, as example, with betweenness
2. It arises from the connections between Bisheri and Castellani (two shortest paths
involving three nodes, with one going through Peruzzi), Bisheri and Barbadori (two
shortest paths involving four nodes, with one going through Peruzzi), Guadagni and
Castellani (two shortest paths involving four nodes, with one path going through
Perruzi), and Lamberteschi and Castellani (two shortest paths involving five nodes
with one going through Peruzzi). Hence betweenness for Peruzzi is (1/2) + (1/2) +
(1/2) + (1/2) = 2.
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## calculate and plot the shortest paths
V(marriage)$color <- 8
E(marriage)$color <- 8
PtoA <- get.shortest.paths(marriage, from="Peruzzi", to="Acciaiuoli")
E(marriage, path=PtoA[[1]])$color <- "magenta"
V(marriage)[PtoA[[1]] ]$color <- "magenta"
GtoS <- get.shortest.paths(marriage, from="Ginori", to="Strozzi")
E(marriage, path=GtoS[[1]])$color <- "green"
V(marriage)[ GtoS[[1]] ]$color <- "green"
V(marriage)[ "Medici" ]$color <- "cyan"

set.seed(1)
plot(marriage, layout=layout.fruchterman.reingold,

+ vertex.label=V(marriage)$name,vertex.label.color="black",
+ vertex.frame.color=0, vertex.label.cex=1.5)

Acciaiuoli

Albizzi

Barbadori

Bischeri

Castellani

Ginori

GuadagniLamberteschi

Medici

Pazzi

Peruzzi

Pucci

Ridolfi

Salviati

Strozzi

Tornabuoni

data.frame(V(marriage)$name, betweenness(marriage))

V.marriage..name betweenness.marriage.
1 Acciaiuoli 0.000000
2 Albizzi 19.333333
3 Barbadori 8.500000
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4 Bischeri 9.500000
5 Castellani 5.000000
6 Ginori 0.000000
7 Guadagni 23.166667
8 Lamberteschi 0.000000
9 Medici 47.500000
10 Pazzi 0.000000
11 Peruzzi 2.000000
12 Pucci 0.000000
13 Ridolfi 10.333333
14 Salviati 13.000000
15 Strozzi 9.333333
16 Tornabuoni 8.333333

Betweenness versus Degree. The Medici have the highest degree (largest number of
edges), but only by a factor of 3/2 over the Strozzi’s. But the Medici’s betweenness
(47.5) is five times higher than that of the Strozzi (9.33). Betweenness measures
total graph connectivity, rather than counting the next door neighbors.

Burt’s Structural Holes. Burt (2004) discusses social capital and how it can lead
to brokerage opportunities. His ideas are similar than betweenness, but he puts
extra weight on connections to isolated nodes. Isolated nodes, or “holes” can
act like bottlenecks in companies, and they lead to unexpected employees having
excess power and influence. But if you are the employee, it may be a fast track to
promotion.

20.2 EXAMPLE 2: CONNECTIONS IN A FRIENDSHIP NETWORK

The second example represents a simulation of an in-school friendship network
for a school community in the rural western United States, with a student body
that is largely Hispanic and Native American. The network object faux.mesa.high,
included in the R library statnet, has 205 vertices (students, in this case) and
203 undirected edges (mutual friendships). The vertex (node) attributes are Grade,
Sex, and Race. The Grade attribute has values 7 through 12, indicating each
student’s grade in school. The Race attribute is based on the answers to two ques-
tions, one on Hispanic identity and one on race, and takes six possible values:
White, Black, Hispanic, Asian, Native American, and Other. See Resnick et al.
(1997).

The R package statnet (Handcock et al., 2008) contains much useful software
for statistical network analysis. The package includes tools for the informative
graphical display of networks (network visualization) and programs for model esti-
mation, model evaluation, and model-based network simulation. There is a large
and growing literature on statistical models for network data, and statnet imple-
ments recent advances on exponential-family random graph models (in short, ergm;
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also an R package). We use statnet for the analysis of this example, but will not
discuss the formal statistical models in this brief introduction.

library(statnet)

data(faux.mesa.high) ## load the network object

summary(faux.mesa.high) ## summarize the data set

Network attributes:
vertices = 205
directed = FALSE undirected graph
hyper = FALSE
loops = FALSE
multiple = FALSE
bipartite = FALSE
total edges = 203 in the undirected graph
missing edges = 0
non-missing edges = 203
density = 0.009708274 203/(205*204/2)

Vertex attributes:

Grade:

numeric valued attribute
attribute summary:
Min. 1st Qu. Median Mean 3rd Qu. Max.
7.000 7.000 9.000 8.732 10.000 12.000

Race:

character valued attribute
attribute summary:

Black Hisp NatAm Other White
6 109 68 4 18

Sex:

character valued attribute
attribute summary:
F M

99 106

No edge attributes

Network edgelist matrix:

[,1] [,2]
[1,] 25 1 node 25 and node 1 are connected
[2,] 52 1 node 52 and node 1 are connected
[3,] 58 1

. . .

. . .
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[201,] 182 181
[202,] 190 183
[203,] 191 189 node 191 and node 189 are connected

There are 203 undirected connections among the 205 nodes. The edge list sum-
marizes the unordered pairs of nodes that are connected. The 205 × 205 symmetric
adjacency matrix has zeros in the diagonal (as a node cannot be connected to
itself), and many zeros and (2)(213) ones as its off-diagonal elements. The net-
work density is given by (2)(203)/[(205)(204)] = 203/[(205)(204)/2] = 0.0097.
Only about 1% of all possible network connections are realized.

lab=network.vertex.names(faux.mesa.high)=c(1:205)

## assigns numbers to nodes

grd=faux.mesa.high%v%"Grade"

sx=faux.mesa.high%v%"Sex"

race=faux.mesa.high%v%"Race"

## we don’t look at race in this example

vs=c(4,12)[match(sx,c("M","F"))]

## used for graph later on; boys by square (4 sides);

## girls by 12-sided

col=c(6,5,3,7,4,2) ## used for graph later on

as.sociomatrix(faux.mesa.high) ## gives adjacency matrix

faux.mesa.high[1,]

faux.mesa.high[5,]

faux.mesa.high[,3]

m=faux.mesa.high[,] ## adjacency matrix

network.density(faux.mesa.high)

## density of network = NuEdges/[nodes*(nodes-1)/2]

[1] 0.009708274

The degree of a certain node in an undirected network is obtained by adding
the number of connections that exist between the node and all other nodes of the
network. Statnet, in its calculation of degree, counts an edge between nodes i and
j twice as it considers both the direction from and the direction to the node. For
an undirected network we divide the degrees that are obtained by statnet by 2, to
make the results consistent with our earlier definition and the results from igraph.
The same adjustment needs to be made for betweenness as statnet sums over all
paths that move from one node to the other and vice versa.

deg=degree(faux.mesa.high)/2
## degree of network nodes (number of connections)
## Statnet double-counts the connections in an undirected network
## Edge between nodes i and j in an undirected network is counted
## twice
## We divide by 2 in order to make the results consistent with our
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## discussion in the text and the output from igraph (in Example 1)
deg

[1] 13 4 0 0 1 0 0 3 4 0 2 0 2 1 4 2 1 4 1 0 3 6 1 0 7
[26] 0 2 0 2 4 2 1 1 2 0 3 0 1 0 1 0 0 3 3 0 0 9 0 0 0
[51] 3 4 2 3 9 2 1 2 3 2 3 0 2 5 2 4 0 1 0 3 1 0 0 5 2
[76] 2 2 1 5 0 1 1 2 0 0 1 10 2 2 1 1 4 1 0 0 7 1 1 3 5

[101] 1 4 2 5 2 0 0 3 2 5 1 1 0 3 3 0 1 0 0 0 1 1 7 3 1
[126] 0 5 1 3 0 2 2 1 3 0 5 4 3 6 5 1 3 0 1 0 1 1 1 3 4
[151] 2 0 3 0 1 1 4 4 0 8 3 0 0 3 4 1 1 0 0 1 0 0 4 1 0
[176] 1 0 3 4 1 1 2 3 0 5 1 4 0 7 4 2 2 1 3 3 2 0 1 1 1
[201] 2 1 0 3 1

betw=betweenness(faux.mesa.high)/2
## betweenness of network
## Statnet double-counts the betweenness in an undirected network
## We divide by 2 in order to make the results consistent with our
## discussion in the text and the output from igraph
betw

[1] 3661.957143 46.033333 0.000000 0.000000 0.000000 0.000000
[7] 0.000000 0.000000 235.000000 0.000000 0.000000 0.000000

[13] 38.625000 0.000000 92.809524 118.000000 0.000000 235.500000
[19] 0.000000 0.000000 1401.026190 189.080952 0.000000 0.000000
[25] 463.500000 0.000000 1.000000 0.000000 0.000000 678.000000
[31] 0.000000 0.000000 0.000000 118.000000 0.000000 3.000000
[37] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
[43] 0.500000 2.000000 0.000000 0.000000 1858.955952 0.000000
[49] 0.000000 0.000000 2.000000 54.428571 0.000000 570.000000
[55] 580.067857 118.000000 0.000000 2037.973810 263.000000 0.000000
[61] 80.591667 0.000000 118.000000 117.273810 0.000000 119.450000
[67] 0.000000 0.000000 0.000000 888.000000 0.000000 0.000000
[73] 0.000000 792.000000 348.000000 0.000000 0.000000 0.000000
[79] 572.000000 0.000000 0.000000 0.000000 0.000000 0.000000
[85] 0.000000 0.000000 405.816667 0.000000 2.000000 0.000000
[91] 0.000000 3.333333 0.000000 0.000000 0.000000 490.466667
[97] 0.000000 0.000000 0.000000 397.661905 0.000000 1388.270238

[103] 1.000000 288.000000 0.000000 0.000000 0.000000 118.000000
[109] 118.000000 118.416667 0.000000 0.000000 0.000000 1.000000
[115] 118.000000 0.000000 0.000000 0.000000 0.000000 0.000000
[121] 0.000000 0.000000 2032.525000 1606.026190 0.000000 0.000000
[127] 297.750000 0.000000 234.000000 0.000000 2.000000 678.000000
[133] 0.000000 42.633333 0.000000 350.000000 119.166667 118.000000
[139] 647.722619 1295.026190 0.000000 234.000000 0.000000 0.000000
[145] 0.000000 0.000000 0.000000 0.000000 2074.973810 785.500000
[151] 0.000000 0.000000 193.158333 0.000000 0.000000 0.000000
[157] 47.569048 505.500000 0.000000 1891.026190 1635.442857 0.000000
[163] 0.000000 0.000000 2442.973810 0.000000 0.000000 0.000000
[169] 0.000000 0.000000 0.000000 0.000000 2.000000 0.000000
[175] 0.000000 0.000000 0.000000 1930.973810 84.516667 0.000000
[181] 0.000000 1.000000 25.916667 0.000000 575.000000 0.000000
[187] 798.000000 0.000000 1058.600000 158.259524 0.000000 1.000000
[193] 0.000000 118.000000 168.000000 2.000000 0.000000 0.000000
[199] 0.000000 0.000000 0.000000 0.000000 0.000000 235.000000
[205] 0.000000

plot(deg)
plot(betw)
hist(deg,breaks=c(-0.5,0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,

+ 8.5,9.5,10.5,11.5,12.5,13.5))
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A couple of students (e.g., the first student on the list, a female seventh grader,
with 13 connections) are well connected, but most students have relatively few con-
nections. More than 25% of the students are “singletons” (i.e., have no connections
to other nodes), and about 50% of the students have at most one connection.

plot(deg,betw)
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boxplot(deg~grd)

boxplot(deg~sx)

7 8 9 10 11 12
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4
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8
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4
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8
10

12

F M

Females have more connections than males, and eighth to tenth graders have
fewer connections than entering seventh graders and students who are close to
graduation.

We have already shown how to obtain the adjacency matrix from a given statnet
network object. Below we show how to export the edge list. We also show how
to create a statnet network object from first principles when given the edge list (or
adjacency matrix).

## faux.mesa.high is already a network object

## below we illustrate how to create an undirected network

## from the edge list

## first we obtain the edge list of a network object

attributes(faux.mesa.high)

vv=faux.mesa.high$mel

edge=matrix(nrow=203,ncol=2)

for (i in 1:203) {

vvv=vv[[203+i]]

edge[i,1]=vvv$inl

edge[i,2]=vvv$outl

}

edge

## edge contains the edge list

## in an undirected network, edge information is stored in the

## second half of faux.mesa.high$mel

faux1=network(edge,directed=FALSE,matrix.type="edgelist")

faux1
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faux1[,]

deg=degree(faux1)/2

betw=betweenness(faux1)/2

plot(deg)

plot(betw)

plot(deg,betw)

## faux.mesa.high is already a network object

## below we illustrate how to create an undirected network

## from the adjacency matrix

## the adjacency matrix had been stored previously in m

faux2=network(m,directed=FALSE,matrix.type="adjacency")

faux2

faux2[,]

deg=degree(faux2)/2

betw=betweenness(faux2)/2

plot(deg)

plot(betw)

plot(deg,betw)

Visual displays of the network, with and without information on node attributes,
are shown as follows:

## visual display of the network

set.seed(654) ## to get reproducible graphs

plot(faux.mesa.high)

## generic graph without labels/covariates

set.seed(654) ## to get reproducible graphs

plot(faux.mesa.high,label=lab) ## generic graph with labels
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set.seed(654) ## to get reproducible graphs

plot(faux.mesa.high,vertex.sides=vs,vertex.rot=45,

+ vertex.cex=2,vertex.col=col[grd-6],edge.lwd=2,

+ cex.main=3,displayisolates=FALSE)

legend("bottomright",legend=7:12,fill=col,cex=0.75)

## 45 rotates square

## isolates are not displayed

7
8
9
10
11
12

The last graph is quite informative. Females are represented by circles (12-sided
objects) and males by squares; grade is indicated by color. Students, especially those
in lower grades, interact mostly with students from the same grade; links with
students from other grades are not that common. We notice a few isolated small
groups, usually consisting of students from the same grade and gender, with very
few ties to other students. A couple of students (e.g., student 1, a female seventh
grader, with 13 connections) are well connected, but most students have relatively
few connections. More than 25% of the students are isolated (“singletons”), and
about 50% of the students have at most one connection. Note that “singletons” are
not displayed on the last graph.

Let us look at the connections more closely and let us investigate whether
connections are affected by the node characteristics, grade and gender. While we
can use statistical models to estimate the impact of grade and gender (and the R
package statnet can be used for this), the following descriptive analysis will be
sufficient for our purpose.

Below, we use the adjacency matrix to calculate network densities for various
subgroups. We measure the density of the

www.it-ebooks.info

http://www.it-ebooks.info/


286 NETWORK DATA

• interaction among students from a certain grade with students from the same
grade;

• interaction among students from a certain grade with students from all grades;

• interaction among students from a certain gender group with students of the
same gender;

• interaction among students from a certain gender group with students of either
gender.

The network among females is more “dense” than the network among males
(0.0169 vs 0.0089). Ties between female students and students of either gender
are more prevalent than ties between male students and students of either gender
(0.0116 vs 0.0079). The density among students within the same grade is largest
for twelfth graders (0.0909). When considering connections with students from all
grades, the densities for seventh graders (0.0121) and for twelfth graders (0.0114)
are about the same.

## density of interaction among students from the

## same grade (ignoring gender)

m1=m[grd==7,grd==7]

sum(m1)/(nrow(m1)*(ncol(m1)-1))

[1] 0.03966155

m1=m[grd==8,grd==8]

sum(m1)/(nrow(m1)*(ncol(m1)-1))

[1] 0.04230769

m1=m[grd==9,grd==9]

sum(m1)/(nrow(m1)*(ncol(m1)-1))

[1] 0.02671312

m1=m[grd==10,grd==10]

sum(m1)/(nrow(m1)*(ncol(m1)-1))

[1] 0.03

m1=m[grd==11,grd==11]

sum(m1)/(nrow(m1)*(ncol(m1)-1))

[1] 0.0615942

m1=m[grd==12,grd==12]
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sum(m1)/(nrow(m1)*(ncol(m1)-1))

[1] 0.09090909

## density of interaction among students from a given grade

## with students from all grades (ignoring gender)

## matrix m1 shown below is not square; it has r rows and

## c columns

## the c columns include the r nodes that determine the

## rows of m1. The number of possible edges in m1 are

## r(r-1) + r(c-r) = r(c-1)

m1=m[grd==7,]

sum(m1)/(nrow(m1)*(ncol(m1)-1))

[1] 0.01209677

m1=m[grd==8,]

sum(m1)/(nrow(m1)*(ncol(m1)-1))

[1] 0.009191176

m1=m[grd==9,]

sum(m1)/(nrow(m1)*(ncol(m1)-1))

[1] 0.007586368

m1=m[grd==10,]

sum(m1)/(nrow(m1)*(ncol(m1)-1))

[1] 0.007058824

m1=m[grd==11,]

sum(m1)/(nrow(m1)*(ncol(m1)-1))

[1] 0.01000817

m1=m[grd==12,]

sum(m1)/(nrow(m1)*(ncol(m1)-1))

[1] 0.01143791

## density of interaction among students from the

## same gender group (ignoring grade)

m1=m[sx=="F",sx=="F"]

sum(m1)/(nrow(m1)*(ncol(m1)-1))

[1] 0.01690373
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m1=m[sx=="M",sx=="M"]

sum(m1)/(nrow(m1)*(ncol(m1)-1))

[1] 0.008984726

## density of interaction among students from a given gender

## group with students of either gender (ignoring grade)

m1=m[sx=="F",]

sum(m1)/(nrow(m1)*(ncol(m1)-1))

[1] 0.01163597

m1=m[sx=="M",]

sum(m1)/(nrow(m1)*(ncol(m1)-1))

[1] 0.00790788

Furthermore, densities can be stratified according to gender. For example, the
network among seventh graders of the same gender is four times “denser” for
females (0.0823) than it is for males (0.0228). Also the network between seventh
graders and same gender students of all grades is about four times “denser” for
females (0.0291) than it is for males (0.0060). The gender differences become
considerably weaker for twelfth graders. The density of the network between twelfth
graders and same gender students of all grades for females (0.0117) and males
(0.0114) are similar.

## density of interaction among students from the

## same grade, for given gender

## female seventh graders

m1=m[sx=="F",sx=="F"]

grd1=grd[sx=="F"]

m2=m1[grd1==7,grd1==7]

sum(m2)/(nrow(m2)*(ncol(m2)-1))

[1] 0.08235294

## male seventh graders

m1=m[sx=="M",sx=="M"]

grd1=grd[sx=="M"]

m2=m1[grd1==7,grd1==7]

sum(m2)/(nrow(m2)*(ncol(m2)-1))

[1] 0.02279202
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## female twelfth graders

m1=m[sx=="F",sx=="F"]

grd1=grd[sx=="F"]

m2=m1[grd1==12,grd1==12]

sum(m2)/(nrow(m2)*(ncol(m2)-1))

[1] 0.04761905

## male twelfth graders

m1=m[sx=="M",sx=="M"]

grd1=grd[sx=="M"]

m2=m1[grd1==12,grd1==12]

sum(m2)/(nrow(m2)*(ncol(m2)-1))

[1] 0.1

## density of interaction among students from a given grade

## with students from all grades, for given gender

## female seventh graders

m1=m[sx=="F",sx=="F"]

grd1=grd[sx=="F"]

m2=m1[grd1==7,]

sum(m2)/(nrow(m2)*(ncol(m2)-1))

[1] 0.02915452

## male seventh graders

m1=m[sx=="M",sx=="M"]

grd1=grd[sx=="M"]

m2=m1[grd1==7,]

sum(m2)/(nrow(m2)*(ncol(m2)-1))

[1] 0.005996473

## female twelfth graders

m1=m[sx=="F",sx=="F"]

grd1=grd[sx=="F"]

m2=m1[grd1==12,]

sum(m2)/(nrow(m2)*(ncol(m2)-1))

[1] 0.01166181

## male twelfth graders

m1=m[sx=="M",sx=="M"]

grd1=grd[sx=="M"]

m2=m1[grd1==12,]

sum(m2)/(nrow(m2)*(ncol(m2)-1))
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[1] 0.01142857

A further comment: There are many different ways of plotting the connections
of a network, and plots of the very same adjacency matrix may look quite differ-
ent depending on how nodes are located on the graph. So, even a simple visual
display of a network structure makes some assumptions. We illustrate this by visu-
alizing the same network as drawn according to three commonly adopted design
principles (Fruchterman and Reingold, the design that is usually recommended;
Kamada-Kawai; and the circle arrangement, which at least in this case, is not a
very informative design criterion).

## Plotting options. Not that easy. Pictures look differently

## Principles of Fruchterman/Reingold:

## Distribute vertices evenly in the frame

## Minimize the number of edge crossings

## Make edge lengths uniform

## Reflect inherent symmetry

## Conform to the frame

set.seed(654) ## to get reproducible graphs

plot(faux.mesa.high,mode="fruchtermanreingold",

+ label=lab,vertex.sides=vs,vertex.rot=45,

+ vertex.cex=2.5,vertex.col=col[grd-6],edge.lwd=2,

+ cex.main=3,displayisolates=FALSE)

legend("bottomright",legend=7:12,fill=col,cex=0.75)
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set.seed(654) ## to get reproducible graphs

plot(faux.mesa.high,mode="kamadakawai",label=lab,

+ vertex.sides=vs,vertex.rot=45,vertex.cex=2.5,

+ vertex.col=col[grd-6],edge.lwd=2,cex.main=3,

+ displayisolates=FALSE)

legend("bottomright",legend=7:12,fill=col,cex=0.75)
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set.seed(654) ## to get reproducible graphs

plot(faux.mesa.high,mode="circle",label=lab,

+ vertex.sides=vs,vertex.rot=45,vertex.cex=2.5,

+ vertex.col=col[grd-6],edge.lwd=2,cex.main=3,

+ displayisolates=FALSE)

legend("bottomright",legend=7:12,fill=col,cex=0.75)
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The R program that has created this output can be found on the web page that
accompanies this book.
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APPENDIX A

Exercises

In this appendix I list exercises that should help (i) the reader to master the mate-
rial and (ii) the instructor using this book to assess student learning. The problems
under Exercise 1 should be assigned immediately after having studied each chapter.
Exercises 2 through 4 address the analyses of several large data sets: eight data sets
from Jank (2011), three data sets from Williams (2011), and several data sets from
the annual Data Mining and Knowledge Discovery competitions organized by the
ACM Special Interest Group on Knowledge Discovery and Data Mining. The data
sets can be used to practice the material of Chapter 2 (on obtaining relevant graphi-
cal displays and numerical summaries) and the modeling tools that are discussed in
the subsequent chapters. Regression, regression trees, and LASSO methods predict
continuous outcome measures, and the quality of the predictions is assessed on
evaluation data sets or through cross-validation. Logistic and multinomial logistic
regression, classification trees, naı̈ve Bayesian methods, nearest neighbor methods,
and discriminant analysis classify observations on categorical outcome variables.
Clustering methods divide units into homogeneous groups, and tools such as prin-
cipal components analysis help reduce the dimensionality the data. Two smaller
data sets in Exercises 5 and 6 illustrate logistic regression and classification trees.
Exercise 7 contains eight examples on regression, logistic regression, multinomial
logistic regression, discriminant analysis, and regression and classification trees.
While solutions for these exercises are provided, I suggest that readers reanalyze
these eight data sets and explore and evaluate alternative methods. Also, I have
found it useful to assign to groups of students relatively unstructured projects that
require each group to identify a problem of interest and collect data that is relevant
to the problem’s solution. Students learn best if they see the practical relevance
of the studied material. Larger-scale projects where groups design and carry out
their own studies go beyond simple exercises and are designed to challenge stu-
dents. Written term papers on these projects and subsequent oral presentations of
the results can also be used for student evaluation.

Data Mining and Business Analytics with R, First Edition. Johannes Ledolter.
 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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EXERCISE 1

After reading each chapter, duplicate the numerical results given in the chapter’s
illustrations by executing the R programs that are given on the book’s webpage.
Investigate discrepancies in case you find differences.

Exercises for students with good computer background. Improve the R
programs that are listed on the book’s webpage and make them more
efficient.

Exercises for students with strong statistics background. Elaborate on the
methods that are discussed in the chapter. Search the literature for other
interesting examples. Use the R software templates to analyze these examples.
Comment on differences in the numerical results if you find that your analyses
differ from the published results.

EXERCISE 2

Consider the following data sets taken from the text by Jank (2011).

Data1. The HousePrices.csv data set includes prices and characteristics of
n = 128 houses in a major US metropolitan area. The variables include Price
(sale price in dollars), SqFt (size in square feet), Bedrooms (number of),
Bathrooms (number of), Offers (number of offers the house has received
while on the market), Brick (whether it is brick construction; Yes/No), and
Neighborhood (East/North/West). The objective is to explain the sale price
of a house as a function of its characteristics.

Data2. The DirectMarketing.csv data set includes data from a direct marketer
who sells his products only via direct mail. He sends catalogs with product
characteristics to customers who then order directly from the catalogs. The
marketer has developed customer records to learn what makes some cus-
tomers spend more than others. The data set includes n = 1000 customers
and the following variables: Age (of customer; old/middle/young); Gender
(male/female); OwnHome (whether customer owns home; yes/no); Married
(single/married); Location (far/close; in terms of distance to the nearest brick
and mortar store that sells similar products); Salary (yearly salary of cus-
tomer; in dollars); Children (number of children; 0–3); History (of previous
purchase volume; low/medium/high/NA; NA means that this customer has
not yet purchased); Catalogs (number of catalogs sent); and AmountSpent (in
dollars). The objective is to explain AmountSpent in terms of the provided
customer characteristics.

Data3. The GenderDiscrimination.csv data set includes Gender (male/
female), Experience (work experience, in years), and Salary (annual salary
in dollars) of n = 208 individuals. The objective is to learn whether the data
indicate systematic compensation discrimination against female employees.
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Data4. The LoanData.csv data set lists the outcome of n = 5611 loans. This
data set comes from the consumer-to-consumer (C2C) lending market where
borrowers post loan listings and lenders invest in those loans by bidding
on the borrower’s loan rates. The data variables include the Status of the
loan (ultimate outcome; whether the loan is current, late, or in default), the
Credit.Grade of the loan (categorical; from the best rating AA to the worst
one, HC for heavy risk), Amount of loan (in dollars), Age of loan (in months),
the Borrower.Rate, and the Debt.To.Income.Ratio. Here the objective is to
distinguish among good and bad loans, that is, to classify loans into good
(current), late, and default loans.

Data5. The FinancialIndicators.csv data set lists indicators of the financial
health of n = 7112 companies listed at various stock exchanges. The objec-
tive here is to explore the relevance of accounting information for explaining
and predicting stock returns. Financial indicators include profitability ratios
(such as gross margins and profit margins), liquidity ratios (such as the oper-
ating cost flow ratio), activity ratios (such as the stock turnover ratio), and
debt and market ratios. Analyzing this data set, one appreciates the fact that
(i) available financial indicators are closely related (multicollinear) and (ii) it
is not particularly easy to obtain strong relationships between stock price (or
stock price changes) and the accounting information.

Objectives: Analyze the data sets D1–D5 using the appropriate methods. You
may want to use regression and regression trees for data sets D1, D2, and D3 and
classification methods such as logistic regression and classification trees for data
set D4. For data set D5, you may want to consider dimension reduction techniques
such as principal components to describe the state of health of a stock company.
You may want to relate the return on a stock to the accounting summaries or their
first few principal components.

Before modeling the information, use data summaries and graphical displays
such as histograms and scatter plots to illustrate the information that is contained
in the data. Stratify histograms and scatter plots whenever possible to achieve
displays of the data in more than two dimensions. Evaluate the models that you
have fitted to the data. Use cross-classification and consider splitting the data into
estimation and test (evaluation) data sets.

hp <- read.csv("C:/DataMining/Data/HousePrices.csv")

hp[1:3,]

dm <- read.csv("C:/DataMining/Data/DirectMarketing.csv")

dm[1:3,]

gd <- read.csv("C:/DataMining/Data/GenderDiscrimination.csv")

gd[1:3,]

ld <- read.csv("C:/DataMining/Data/LoanData.csv")

ld[1:3,]

fi <- read.csv("C:/DataMining/Data/FinancialIndicators.csv")

fi[1:3,]
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EXERCISE 3

Consider the following data sets taken from the text by Williams (2011).

Data6 and Data7. The weather.csv data set contains 1 year of daily observations
from a single weather station (Canberra); n = 366 rows. The weatherAUS.csv data
set contains n = 36, 881 daily observations from 45 Australian weather stations.
The weather data were obtained from the Australian Commonwealth Bureau of
Meteorology. The data has been processed to provide a binary target variable
RainTomorrow (whether there is rain during the next day; No/Yes) and a continuous
target (risk) variable RISK_MM (the amount of rain recorded during the next day).
The data set includes the following variables:

Date: The date of observation (a date object).

Location: The common name of the location of the weather station.

MinTemp: The minimum temperature in degrees centigrade.

MaxTemp: The maximum temperature in degrees centigrade.

Rainfall: The amount of rainfall recorded for the day in millimeters.

Evaporation: Class A pan evaporation (in millimeters) during 24 h (until 9 a.m.).

Sunshine: The number of hours of bright sunshine in the day.

WindGustDir: The direction of the strongest wind gust in the 24 h to midnight.

WindGustSpeed: The speed (in kilometers per hour) of the strongest wind gust
in the 24 h to midnight.

WindDir9am: The direction of the wind gust at 9 a.m.

WindDir3pm: The direction of the wind gust at 3 p.m.

WindSpeed9am: Wind speed (in kilometers per hour) averaged over 10 min
before 9 a.m.

WindSpeed3pm: Wind speed (in kilometers per hour) averaged over 10 min
before 3 p.m.

RelHumid9am: Relative humidity (in percent) at 9 am.

RelHumid3pm: Relative humidity (in percent) at 3 p.m.

Pressure9am: Atmospheric pressure (hpa) reduced to mean sea level at 9 a.m.

Pressure3pm: Atmospheric pressure (hpa) reduced to mean sea level at 3 p.m.

Cloud9am: Fraction of sky obscured by cloud at 9 a.m. This is measured in
”oktas,” which are a unit of eighths. It records how many eighths of the sky
are obscured by cloud. A 0 measure indicates completely clear sky, while an
8 indicates that it is completely overcast.

Cloud3pm: Fraction of sky obscured by cloud at 3 p.m; see Cloud9am for a
description of the values.

Temp9am: Temperature (degrees C) at 9 a.m.

Temp3pm: Temperature (degrees C) at 3 p.m.
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RainToday: Integer 1 if precipitation (in millimeters) in the 24 h to 9 a.m. exceeds
1 mm, otherwise 0.

RISK_MM: The continuous target variable; the amount of rain recorded during
the next day.

RainTomorrow: The binary target variable whether it rains or not during the
next day.

Objectives: Analyze the data sets. The objective is to predict tomorrow’s rain
amount (a continuous target variable) and tomorrow’s likelihood of rain (a binary
target variable). Use the appropriate tools such as regression and logistic regres-
sion, regression and classification trees, discriminant analysis, and naı̈ve Bayesian
methods. Compare your model results on holdout samples.

weather <- read.csv("C:/DataMining/Data/weather.csv")

weather[1:3,]

weatherAUS <- read.csv("C:/DataMining/Data/weatherAUS.csv")

weatherAUS[1:3,]

Data8. The audit.csv data set is an artificially constructed data set that contains
the characteristics of n = 2000 individual tax returns. The data set includes the
following variables:

ID: Unique identifier for each person.

Age: Age of person.

Employment: Type of employment.

Education: Highest level of education.

Marital: Current marital status.

Occupation: Type of occupation.

Income: Amount of income declared.

Gender: Gender of person.

Deductions: Total amount of expenses that a person claims in their financial
statement.

Hours: Average hours worked on a weekly basis.

RISK_Adjustment: The continuous target variable; this variable records the mon-
etary amount of any adjustment to the person’s financial claims as a result of
a productive audit. This variable is a measure of the size of the risk associated
with the person.

TARGET_Adjusted: The binary target variable for classification modeling (0/1),
indicating nonproductive and productive audits, respectively. Productive
audits are those that result in an adjustment being made to a client’s financial
statement.
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Objectives: Analyze the data set. Explore the data by preparing useful graphs
and tables. Here the objective is to predict the binary (TARGET_Adjusted) and con-
tinuous (RISK_Adjustment) target variables. Tools such as regression and logistic
regression, and regression and classification trees should be tried. Evaluate the
models through cross-validation and on holdout samples.

audit <- read.csv("C:/DataMining/Data/audit.csv")

audit[1:3,]

EXERCISE 4

An annual Data Mining and Knowledge Discovery competition is organized by
the ACM Special Interest Group on Knowledge Discovery and Data Mining, the
leading professional organization of data miners. This competition is referred to
as the KDD Cup. The webpage http://www.sigkdd.org/kddcup/ lists the topics of
previous competitions, describes the objectives of the posed problems, and pro-
vides zipped files of the relevant training and evaluation data sets. The webpage
discusses the metrics that are used to evaluate the submissions and provides links
to methodologies that turned out particularly useful. The scope of most problems
goes beyond the introductory discussion of this book. The posted problems are
quite challenging, with many cases and a very large number of variables (the num-
bers of cases and variables are quite a bit larger than those considered in this text).
Nevertheless, some of the problems are relevant and should be accessible for study
to groups of students with good computer science background. Looking through
the various competitions, I believe that the challenges in 2000 and 1997/1998 are
best suited for group study.

The 2000 Challenge deals with clickstream and purchase data for Gazelle, a
manufacturer and distributor of hosiery. The 1997/1998 Challenge deals with the
response to a direct mailing and how to maximize donations to a charity. Additional
possibilities for student projects are the 2009 Challenge that deals with issues of
customer relationship management (CRM) and the 2007 Challenge that addresses
the Netflix movie ratings.

It is the problem for the 1997/1998 Challenge that is discussed here. The data
has been provided by the Paralyzed Veterans of America (PVA), a not-for-profit
organization that provides programs and services for US veterans with spinal cord
injuries or disease. With an in-house database of over 13 million donors, PVA
is also one of the largest direct-mail fund raisers in the country. The study lists
the results of a June 1997 fund-raising mailing to millions of PVA donors. The
mailing includes a gift “premium” of personalized name and address labels plus an
assortment of 10 note cards and envelopes. The training data includes the response
to the appeal (an indicator whether a donation has been made, as well as the
amount of the donation), numerous variables that describe the recipient as well as
demographic information, and prior donation history. The objective of the analysis
is to predict the response to the mailing—whether a donation is made and, if so,
the amount of the donation. This task involves classification/discrimination (for
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predicting the occurrence of a donation) and regression (for predicting the amount
of the donation). The performance of any proposed method can be evaluated on a
test data set that has been withheld from the estimation data set.

Information about the problem is given in the file cup98doc.txt that can be
found on the webpage http://www.sigkdd.org/kddcup/. The learning data set in
file cup98lrn.zip contains 95,412 records, with each record consisting of 481
variables. The dictionary file cup98dic.txt gives a description of the variables.
TARGET_B is a binary indicator that expresses the response to the most recent
mailing; TARGET_D represents the donation amount (in dollars). These are the
variables that need to be predicted. The variable CONTROLN is a control num-
ber that allows you to link the records in the evaluation data set cup98val.zip
(96,367 cases and 479 variables) to the actual responses for TARGET_B and
TARGET_D that are given in the file cup98VALtargt.csv. Download and unzip
these files and look at their contents. Zipped versions of comma-delimited Excel
files (cup98LRN_csv.zip, cup98VAL_csv.zip) and the file cup98VALtargt.csv
are available on the book’s webpage. Unzip these files to create the Excel files
cup98LRN.csv and cup98VAL.csv, and read them into your R session (as illus-
trated below). Use the learning data set to find models that predict the target values
and evaluate the predictions on the evaluation data sets.

## read the data

cup98LRN <- read.csv("C:/DataMining/Data/cup98LRN.csv")

cup98LRN[1:3,]

## read the data

cup98VAL <- read.csv("C:/DataMining/Data/cup98VAL.csv")

cup98VAL[1:3,]

## read the data

cup98VALtargt <- read.csv("C:/DataMining/Data/cup98VALtargt.csv")

cup98VALtargt[1:3,]

EXERCISE 5

The following data are taken from Higgins and Koch (1977). The data come from
an extensive survey of workers in the cotton industry. The variable of interest is
the presence of lung byssinosis. Byssinosis, also called brown lung disease, is a
chronic, asthma-like narrowing of the airways resulting from inhaling particles of
cotton, flax, hemp, or jute. It has been recognized as an occupational hazard for
textile workers. More than 35,000 textile workers, mostly from textile-producing
regions of North and South Carolina, have been disabled by byssinosis, and 183
have died between 1979 and 1992.

Numbers of workers suffering from (yes) and not suffering from (no) byssi-
nosis for different categories of workers are given below. The covariates are race
(1, white; 2, other); gender (1, male; 2, female); smoking history (1, smoker;
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2, nonsmoker); length of employment in the cotton industry (1, less than 10 years;
2, between 10 and 20 years; 3, more than 20 years); and the dustiness of the
workplace (1, high; 2, medium; 3, low).

The information can be arranged as a factorial, with the number of
affected workers among the total number of workers in each group as the
response variable. The 72 groups of the factorial arrangement are formed by
all possible level combinations of the five explanatory variables: 3(Dust) ×
2(Race) × 2(Sex) × 2(Smoking) × 3(Employment). Seven of the 72 categories
are empty. A subset of the data is shown below. The data, arranged as outcomes
(1 = YES and 0 = NO) and their frequencies (Weights), are given in the file
byssinosisWeights.csv.

Yes No Number Dust Race Sex Smoking Employ Length

3 37 40 1 1 1 1 1

0 74 74 2 1 1 1 1

2 258 260 3 1 1 1 1

25 139 164 1 2 1 1 1

. . . . . . . .

. . . . . . . .

2 340 342 3 1 2 2 3

0 0 0 1 2 2 2 3

0 2 2 2 2 2 2 3

0 3 3 3 2 2 2 3

Relate the outcomes (1 = YES and 0 = NO) and their frequencies to the
explanatory variables. Treat the explanatory variables as (categorical) factors.
Analyze the data. In particular,

• Fit a logistic regression model. Assess its adequacy and interpret the results.
Discuss whether (and which of) the covariates have an influence on the pres-
ence of byssinosis.

• Consider classification trees to predict the likelihood of contracting byssinosis.
Byssinosis is a relatively rare disease, even under the worst conditions. Inter-
pret the output. Identify the conditions under which byssinosis is most likely
to occur.

## read the data

bys <- read.csv("C:/DataMining/Data/byssinosisWeights.csv")

EXERCISE 6

The following data are taken from Brown et al. (1983). The data, collected in
Bradford (UK) between 1968 and 1977, are from 13,384 women giving birth to
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their first child. The data set includes information on toxemic signs exhibited by
the mother during pregnancy: hypertension only; proteinurea (i.e., the presence of
protein in urine) only; both hypertension and proteinurea; and neither hypertension
nor proteinurea. The aim of the study was to learn if the level of smoking and
the social class are related to the incidence of toxemic signs and how this might
depend on social class. The two covariates are social class (1 through 5) and the
number of cigarettes smoked (1, none; 2, 1–19 cigarettes per day; 3, more than 20
cigarettes per day).

Both
Hypertension Protei- Hyper- Neither
and nurea tension Problem

Class Smoking Proteinurea Only Only Exhibited Total

1 1 28 82 21 286 417
1 2 5 24 5 71 105
1 3 1 3 0 13 17
2 1 50 266 34 785 1135
2 2 13 92 17 284 406
2 3 0 15 3 34 52
3 1 278 1101 164 3160 4703
3 2 120 492 142 2300 3054
3 3 16 92 32 383 523
4 1 63 213 52 656 984
4 2 35 129 46 649 859
4 3 7 40 12 163 222
5 1 20 78 23 245 366
5 2 22 74 34 321 451
5 3 7 14 4 65 90

The data, arranged as outcomes (1 = YES and 0 = NO) and their frequencies
(weights), are given in the file toxaemiaWeights.csv. Analyze the data. Discuss
whether (and which of) the covariates have an influence on the presence of toxemic
signs. Consider each symptom group separately. Find suitable logistic models and
compare their classification results with those from classification trees.

The information can be arranged as a factorial, with the 15 groups of the factorial
arrangement formed by all possible level combinations of the two explanatory
variables: 5(Class) × 3(Smoking). Use the binary logistic regression function in R,
specifying the outcomes (1 = YES and 0 = NO) and their frequencies, and entering
the explanatory variables as (categorical) factors.

## read the data

tox <- read.csv("C:/DataMining/Data/toxaemiaWeights.csv")

EXERCISE 7

The following eight examples illustrate regression, logistic regression, multinomial
logistic regression, discriminant analysis, and regression and classification trees.
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The objective in these examples is to predict or classify the observations. Reanalyze
these eight data sets and explore and evaluate alternative methods.

EXAMPLE 7.1 CLASSIFICATION TREE FOR IDENTIFYING SOYBEAN
DISEASE

The soybean data set is taken from the UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/datasets/Soybean+(Large)). The data come from the
paper by Michalski and Chilausky (1980).

The data set soybean15.csv contains 290 different diseased soybean samples.
The type of disease (there are 15 different classes of disease, such as charcoal rot,
brown stem rot, and downey mildew) is given in the first column. The next 35
columns contain categorical factors that describe various attributes of the soybean
plant and the growing conditions; a nominal scale is assumed for all attributes.
The objective is to use the information on these attributes to predict the disease
classification. Some attributes include missing values (they are labeled as blanks
in the Excel file, and as NA in the R session); 24 of the 290 cases have a missing
observation for at least one of the attributes, which leaves 266 observations for the
analysis. The list of attributes with their outcomes is shown as follows:

1. date: april,may,june,july,august,september,october.
2. plant-stand: normal,lt-normal.
3. precip: lt-norm,norm,gt-norm.
4. temp: lt-norm,norm,gt-norm.
5. hail: yes,no.
6. crop-hist: diff-lst-year,same-lst-yr,same-lst-two-yrs,

same-lst-sev-yrs.
7. area-damaged: scattered,low-areas,upper-areas,whole-field.
8. severity: minor,pot-severe,severe.
9. seed-tmt: none,fungicide,other.
10. germition: 90-100%,80-89%,lt-80%.
11. plant-growth: norm,abnorm.
12. leaves: norm,abnorm.
13. leafspots-halo: absent,yellow-halos,no-yellow-halos.
14. leafspots-marg: w-s-marg,no-w-s-marg,dna.
15. leafspot-size: lt-1/8,gt-1/8,dna.
16. leaf-shread: absent,present.
17. leaf-malf: absent,present.
18. leaf-mild: absent,upper-surf,lower-surf.
19. stem: norm,abnorm.
20. lodging: yes,no.
21. stem-cankers: absent,below-soil,above-soil,above-sec-nde.
22. canker-lesion: d,brown,dk-brown-blk,tan.
23. fruiting-bodies: absent,present.
24. exterl decay: absent,firm-and-dry,watery.
25. mycelium: absent,present.
26. int-discolor: none,brown,black.
27. sclerotia: absent,present.
28. fruit-pods: norm,diseased,few-present,dna.
29. fruit spots: absent,colored,brown-w/blk-specks,distort,dna.
30. seed: norm,abnorm.
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31. mold-growth: absent,present.
32. seed-discolor: absent,present.
33. seed-size: norm,lt-norm.
34. shriveling: absent,present.
35. roots: norm,rotted,galls-cysts.

Below we list the R program and we comment on its output. The R program
can be found on the webpage that accompanies this book.

library(ares)
## needed to determine the proportion of missing observations
library(tree) ## classification trees

## reading the data
soybean15 <- read.csv("C:/DataMining/Data/soybean15.csv")
soybean15[1:3,]

disease C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16
1 diaporthe-stem-canker 6 0 2 1 0 1 1 1 0 0 1 1 0 2 2 0
2 diaporthe-stem-canker 4 0 2 1 0 2 0 2 1 1 1 1 0 2 2 0
3 diaporthe-stem-canker 3 0 2 1 0 1 0 2 1 2 1 1 0 2 2 0

C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35
1 0 0 1 1 3 1 1 1 0 0 0 0 4 0 0 0 0 0 0
2 0 0 1 0 3 1 1 1 0 0 0 0 4 0 0 0 0 0 0
3 0 0 1 0 3 0 1 1 0 0 0 0 4 0 0 0 0 0 0

## converting the attributes into factors (nominal scale)
## calculating the proportion of missing observations
miss=dim(36)
for (j in 1:36) {
soybean15[,j]=factor(soybean15[,j])
miss[j]=count.na(soybean15[,j])$na/length(soybean15[,j])
}
miss

[1] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.08275862
[7] 0.00000000 0.00000000 0.08275862 0.08275862 0.08275862 0.00000000

[13] 0.00000000 0.04482759 0.04482759 0.04482759 0.04482759 0.04482759
[19] 0.04482759 0.00000000 0.08275862 0.00000000 0.00000000 0.08275862
[25] 0.00000000 0.00000000 0.00000000 0.00000000 0.08275862 0.08275862
[31] 0.08275862 0.08275862 0.08275862 0.08275862 0.08275862 0.00000000

## fifth attribute (presence/absence of hail) has 8.27% missing
## observations

## constructing the classification tree
soytree <- tree(disease ~., data = soybean15, mincut=1)
soytree
summary(soytree)
plot(soytree, col=8)
text(soytree, digits=2)

## cross-validation to prune the tree
set.seed(2)
cvsoy <- cv.tree(soytree, K=10)
cvsoy$size

[1] 19 18 17 16 15 14 13 12 11 9 8 7 6 5 4 3 2 1
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cvsoy$dev

[1] 269.1145 251.0295 248.2929 287.5657 381.4021 463.4245 475.8316
[8] 487.3538 526.0126 527.9349 542.4499 550.6483 762.4923 762.4923

[15] 862.7270 868.9765 1022.9153 1365.9087

plot(cvsoy, pch=21, bg=8, type="p", cex=1.5, ylim=c(0,1400))
## shows that the tree has many terminal nodes
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soycut <- prune.tree(soytree, best=17)

soycut

node), split, n, deviance, yval, (yprob/omitted)
* denotes terminal node

1) root 266 1342.000 alternarialeaf-spot
2) C15: 0,2 121 548.400 anthracnose

4) C21: 0 65 231.200 brown-stem-rot
8) C26: 0 40 110.900 bacterial-blight
16) C18: 0 30 65.920 bacterial-blight

32) C22: 0 20 27.730 bacterial-blight
64) C14: 0 11 6.702 bacterial-blight *
65) C14: 1 9 0.000 bacterial-pustule *

33) C22: 3 10 0.000 purple-seed-stain *
17) C18: 1 10 0.000 powdery-mildew *
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9) C26: 1,2 25 33.650 brown-stem-rot
18) C26: 1 15 0.000 brown-stem-rot *
19) C26: 2 10 0.000 charcoal-rot *

5) C21: 1,2,3 56 150.200 anthracnose
10) C28: 0,1 30 38.190 anthracnose
20) C29: 0,2 20 0.000 anthracnose *
21) C29: 4 10 0.000 diaporthe-stem-canker *

11) C28: 3 26 34.650 phytophthora-rot
22) C12: 0 10 0.000 rhizoctonia-root-rot *
23) C12: 1 16 0.000 phytophthora-rot *

3) C15: 1 145 449.700 alternarialeaf-spot
6) C1: 0,1,2,3 55 134.000 brown-spot
12) C3: 0,1 14 21.250 phyllosticta-leaf-spot *
13) C3: 2 41 70.480 brown-spot
26) C31: 0 36 40.080 brown-spot *
27) C31: 1 5 0.000 downy-mildew *

7) C1: 4,5,6 90 221.100 alternarialeaf-spot
14) C19: 0 54 85.510 alternarialeaf-spot
28) C31: 0 49 52.190 alternarialeaf-spot *
29) C31: 1 5 0.000 downy-mildew *

15) C19: 1 36 58.740 frog-eye-leaf-spot
30) C28: 0 12 21.300 brown-spot *
31) C28: 1 24 0.000 frog-eye-leaf-spot *

summary(soycut)

Classification tree:
snip.tree(tree = soytree, nodes = c(26, 30))
Variables actually used in tree construction:
[1] "C15" "C21" "C26" "C18" "C22" "C14" "C28"
[8] "C29" "C12" "C1" "C3" "C31" "C19"
Number of terminal nodes: 17
Residual mean deviance: 0.5684 = 141.5 / 249
Misclassification error rate: 0.1015 = 27 / 266

plot(soycut, col=8)

## below we have omitted the text as it is difficult to read

## terminal node 31 is the one on the far right of the graph

## first split: C15ac (to left) and C15b (to the right)

## second split: C1abcd (to left) and C1efg (to right)

## third split: C19a (to left) and C19b (to right)

## fourth split: C28a (to left) and C28bcd (to right)

Here the attributes are factors on a nominal scale. Factor (categorical) attributes
are represented with indicator variables. We explained in Chapter 13 how the tree-
building approach splits categorical attributes. Not creating factors and treating
coded variables as continuous data would split groups according to whether the
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attribute is above or below a numeric threshold. For coded variables this would be
wrong.

The overall misclassification rate is about 10%. There are 17 terminal nodes.
As illustration, consider the last terminal node (listed under 31, and shown as the
terminal node to the very right of the plot). It classifies a soybean sample with
attributes C15b (leafspot size > 1/8), C1efg (sample taken in August, September,
or October), C19b (abnormal stem), and C28bcd (with not normal fruit pod) as
suffering from the “frog-eye-leaf-spot” condition.

EXAMPLE 7.2 CLASSIFICATION TREE FOR FITTING CONTACT
LENSES

This is a data set for fitting contact lenses (taken from Cendrowska, 1987; the data
are available through the UCI Machine Learning Repository). The variable to be
predicted is whether a patient should be fitted with hard, soft, or no contact lenses.
Four patient attributes (all categorical data on nominal scales) are available to make
this choice:

• age {young, pre-presbyopic, presbyopic}
• spectacle-prescription {myope, hypermetrope}
• astigmatism {no, yes}
• tear-prod-rate {reduced, normal}

A listing of all 24 combinations of attributes and the recommended decisions
on the fitting of contact lenses is given in the file ContactLens.csv. The com-
plete tree is shown later; it leads to a perfect description, with no errors. A
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somewhat simpler tree, with three terminal nodes and just two attributes (tear
production rate and astigmatism), recommends no contact lenses for patients with
reduced tear production; soft contacts for patients with normal tear production
and no astigmatism; and hard contact lenses for patients with normal tear produc-
tion and astigmatism present. This tree misclassifies 3 of the 24 possible attribute
combinations.

library(tree)

## read the data
ContactLens <- read.csv("C:/DataMining/Data/ContactLens.csv")
levels(ContactLens[,1]) ## age

[1] "pre-presbyopic" "presbyopic" "young"
levels(ContactLens[,2]) ## spectacle presription

[1] "hypermetrope" "myope"
levels(ContactLens[,3]) ## astigmatism

[1] "no" "yes"
levels(ContactLens[,4]) ## tear production rate

[1] "normal" "reduced"
levels(ContactLens[,5]) ## contact lens

[1] "hard" "none" "soft"

ContactLens

Age SpectaclePrescrip Astigmatism TearProdRate ContactLens
1 young myope no reduced none
2 young myope no normal soft
3 young myope yes reduced none
4 young myope yes normal hard
5 young hypermetrope no reduced none
6 young hypermetrope no normal soft
7 young hypermetrope yes reduced none
8 young hypermetrope yes normal hard
9 pre-presbyopic myope no reduced none
10 pre-presbyopic myope no normal soft
11 pre-presbyopic myope yes reduced none
12 pre-presbyopic myope yes normal hard
13 pre-presbyopic hypermetrope no reduced none
14 pre-presbyopic hypermetrope no normal soft
15 pre-presbyopic hypermetrope yes reduced none
16 pre-presbyopic hypermetrope yes normal none
17 presbyopic myope no reduced none
18 presbyopic myope no normal none
19 presbyopic myope yes reduced none
20 presbyopic myope yes normal hard
21 presbyopic hypermetrope no reduced none
22 presbyopic hypermetrope no normal soft
23 presbyopic hypermetrope yes reduced none
24 presbyopic hypermetrope yes normal none

## constructing the classification tree that fits the data perfectly
cltree <- tree(ContactLens ~., data = ContactLens, mindev=0,

+ minsize=1)
cltree
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summary(cltree)
plot(cltree, col=8)
text(cltree, digits=2)

TearProdRate:a

Astigmatism:a

Age:ac

SpectaclePrescrip:a

SpectaclePrescrip:a

Age:ab
soft

soft none
none hard

hard

none

## pruning the tree to get a simpler tree
clcut <- prune.tree(cltree, best=3)
clcut

node), split, n, deviance, yval, (yprob)
* denotes terminal node

1) root 24 44.120 none ( 0.1667 0.6250 0.2083 )
2) TearProdRate: normal 12 25.860 soft ( 0.3333 0.2500 0.4167 )

4) Astigmatism: no 6 5.407 soft ( 0.0000 0.1667 0.8333 ) *
5) Astigmatism: yes 6 7.638 hard ( 0.6667 0.3333 0.0000 ) *

3) TearProdRate: reduced 12 0.000 none ( 0.0000 1.0000 0.0000 ) *

summary(clcut)

Classification tree:
snip.tree(tree = cltree, nodes = c(4, 5))
Variables actually used in tree construction:
[1] "TearProdRate" "Astigmatism"
Number of terminal nodes: 3
Residual mean deviance: 0.6212 = 13.04 / 21
Misclassification error rate: 0.125 = 3 / 24

plot(clcut, col=8)
text(clcut)
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TearProdRate:a

Astigmatism:a

soft hard

none

The R program can be found on the webpage that accompanies this book.

EXAMPLE 7.3 DETERMINING THE CREDIT RISK USING
A CLASSIFICATION TREE

This is a small data set for assessing the riskiness of certain loans. The riskiness
of a loan (low, moderate, and high) in the last column of the data file credit.csv
is determined from four categorical risk predictors with the following attribute
categories:

• Credit history (bad, good, unknown)

• Debt (high, low)

• Collateral (adequate, none)

• Income group (>35, 0–15, 15–35).

Note that a complete factorial arrangement includes (3)(2)(2)(3) = 36 attribute
combinations; this data set includes only 14.

library(tree)

## first we read in the data
credit <- read.csv("C:/DataMining/Data/credit.csv")
credit

CreditHist Debt Collateral Income Risk
1 bad low none 0–15 high
2 unknown high none 15–35 high
3 unknown low none 15–35 moderate
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4 bad low none 0–15 high
5 unknown low adequate >35 low
6 unknown low none >35 low
7 unknown high none 0–15 high
8 bad low adequate >35 moderate
9 good low none >35 low
10 good high adequate >35 low
11 good high none 0–15 high
12 good high none 15–35 moderate
13 good high none >35 low
14 bad high none 15–35 high

## checking the ordering of the nominal categories
credit[,1]

[1] bad unknown unknown bad unknown unknown unknown bad good
[10] good good good good bad
Levels: bad good unknown

credit[,2]

[1] low high low low low low high low low high high high high high
Levels: high low

credit[,3]

[1] none none none none adequate none none adequate
[9] none adequate none none none none
Levels: adequate none

credit[,4]

[1] 0–15 15–35 15–35 0–15 >35 >35 0–15 >35 >35 >35 0–15 15–35
[13] >35 15–35
Levels: >35 0–15 15–35

credit[,5]

[1] high high moderate high low low high moderate
[9] low low high moderate low high
Levels: high low moderate

## constructing the classification tree that fits the data perfectly
credittree <- tree(Risk ~., data = credit, mindev=0, minsize=1)
credittree

node), split, n, deviance, yval, (yprob)
* denotes terminal node

1) root 14 29.710 high ( 0.4286 0.3571 0.2143 )
2) Income: >35 6 5.407 low ( 0.0000 0.8333 0.1667 )

4) CreditHist: bad 1 0.000 moderate ( 0.0000 0.0000 1.0000 ) *
5) CreditHist: good,unknown 5 0.000 low ( 0.0000 1.0000 0.0000 ) *

3) Income: 0–15,15-35 8 8.997 high ( 0.7500 0.0000 0.2500 )
6) Income: 0–15 4 0.000 high ( 1.0000 0.0000 0.0000 ) *
7) Income: 15–35 4 5.545 high ( 0.5000 0.0000 0.5000 )
14) CreditHist: bad 1 0.000 high ( 1.0000 0.0000 0.0000 ) *
15) CreditHist: good,unknown 3 3.819 moderate ( 0.3333 0.0000 .6667)

30) CreditHist: good 1 0.000 moderate ( 0.0000 0.0000 1.0000 ) *
31) CreditHist: unknown 2 2.773 high ( 0.5000 0.0000 0.5000 )
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62) Debt: high 1 0.000 high ( 1.0000 0.0000 0.0000 ) *
63) Debt: low 1 0.000 moderate ( 0.0000 0.0000 1.0000 ) *

summary(credittree)

Classification tree:
tree(formula = Risk ~ ., data = credit, mindev = 0, minsize = 2)
Variables actually used in tree construction:
[1] "Income" "CreditHist" "Debt"
Number of terminal nodes: 7
Residual mean deviance: 0 = 0 / 7
Misclassification error rate: 0 = 0 / 14

plot(credittree, col=8)
text(credittree, digits=2)

Income:a

CreditHist:a Income:b

CreditHist:a

CreditHist:b
Debt:amoderate low

high

high
moderate

high moderate

The classification tree explains how to predict the riskiness of a loan. The clas-
sification tree has seven terminal nodes and uses three attributes: income, credit
history, and the amount of debt. Collateral does not enter the decision tree. Appli-
cants with income above 35K (income group a) and bad credit history (credit
history a) carry moderate risk. Applicants with income above 35K (income group
a) and good or unknown credit history (credit history not a) carry low risk. Appli-
cants in the low income group (income group b; 0–15) carry high risk. So do
applicants from the middle income group (income group c; 15–35) with bad credit
history (credit history b). For the medium income group (15–35) with unknown
credit history (credit history c), it depends on the prior debt whether the applicant
is selected into the high risk group (if debt is high) or into the moderate risk group
(if debt is low).
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EXAMPLE 7.4 DETERMINING THE PROGRESSION OF LIVER DISEASE
USING A CLASSIFICATION TREE

The data in file hepatitis.csv is taken from the text by Witten et al. (2011). The file,
created by K. Seela, P. Tatavarthy, and S. Tippa, includes liver biopsy results on
306 individuals with confirmed hepatitis transmission. A liver biopsy is usually the
most telling test for assessing the nature and severity of liver disease, and biopsy
results are expressed in terms of three severity groups (I–III). However, biopsies
carry some risk. We would prefer to identify the stage of liver disease from the
results of noninvasive tests if this were possible. The objective of this exercise is
to use patient characteristics to predict the result of the biopsy (last row of the
table shown below). A good predictive model may be able to reduce the number
of needed biopsies.

No Attribute Type of Data Values Description

1 Sex Categorical 0 = M, 1 = F Gender
2 DOB Numeric Date Date of birth
3 DOT Numeric Date Date of transmission of disease
4 Route Categorical Coc, IV, Tx,

N, NRF,
Tatt, Sex

Route through which disease was
transmitted

5 IV Categorical +, − Intravenous
6 Tx Categorical +, − Blood transfusion
7 Coc Categorical +, − Usage of cocaine
8 Tatt Categorical +, − Presence of tattoo on the body of

patient
9 HBV Categorical +, − Presence of hepatitis B virus in

patient
10 HIV Categorical +, − Presence of HIV infection
11 EtOH Categorical +, − Alcohol usage by the patient
12 Obes Categorical +, − Whether the patient is obese or not
13 Rx Categorical +, − Treatment, whether patient has

been treated
14 Tox Categorical +, − Presence of any toxic elements
15 CLD Categorical +, − Whether the patient has chronic

liver disease
16 LFT Categorical +, − Whether or not liver function test

was done
17 YWOD Numeric DOT − DOB, years without the

disease
18 Age Numeric Current age of the patient
19 Bx Categorical I, II, III Biopsy result, which specifies

HepC
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For our analysis we use Gender, Age, YWD(years with the disease) =
Age–YWOD(years without the disease), and the 12 indicator variables 5–16 to
classify the biopsy results in row 19 of the earlier table. Our selection of variables
is slightly different from that of Seela, Tatavarthy, and Tippa, and we have
corrected several incorrect entries.

We recommend a tree with six terminal nodes and four covariates: Age, the
presence of the hepatitis B virus, alcohol usage of the patient, and the presence of
a liver function test. But only 56% of the patients are classified correctly with our
rule. This is probably too low; it appears that biopsies will be necessary.

library(tree)

## data set from Witten

## missing data

hepatitis <- read.csv("C:/DataMining/Data/hepatitis.csv")

hepatitis

## calculating YWD = (Age – YWOD)

hepatitis[,20]=hepatitis[,18]-hepatitis[,17]

colnames(hepatitis)[20]= "YWD"

hepatitis[1:3,]

## cleaning up the data set

hh=hepatitis[,c(-2:-4,-17)]

hh[1:3,]

## create factors for the categorical variables

for (j in 1:13) {

hh[,j]=factor(hh[,j])

}

hh[1:3,]

levels(hh[,6])

levels(hh[,8])

levels(hh[,13])

## constructing the classification tree

heptree <- tree(Bx ~., data = hh)

heptree

summary(heptree)

plot(heptree, col=8)

text(heptree, digits=2)

## cross-validation to prune the tree

set.seed(2)

cvhep <- cv.tree(heptree, K=10)

cvhep$size

cvhep$dev

plot(cvhep, pch=21, bg=8, type="p", cex=1.5, ylim=c(400,750))

hepcut <- prune.tree(heptree, best=6)

hepcut
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1) root 221 463.80 II ( 0.37557 0.42986 0.19457 )
2) Age < 62.5 204 429.30 I ( 0.40196 0.40196 0.19608 )

4) HBV: 0 194 401.90 II ( 0.40722 0.41753 0.17526 )
8) Age < 46.5 66 127.60 I ( 0.54545 0.31818 0.13636 )
16) EtOH: 0 43 73.02 I ( 0.65116 0.25581 0.09302 ) *
17) EtOH: 1 23 48.82 II ( 0.34783 0.43478 0.21739 )

34) LFT: 0 6 0.00 I ( 1.00000 0.00000 0.00000 ) *
35) LFT: 1 17 31.41 II ( 0.11765 0.58824 0.29412 )*

9) Age > 46.5 128 266.40 II (0.33594 0.46875 0.19531)*
5) HBV: 1 10 17.96 III ( 0.30000 0.10000 0.60000 ) *

3) Age > 62.5 17 23.05 II ( 0.05882 0.76471 0.17647 ) *

summary(hepcut)

Classification tree:
snip.tree(tree = heptree, nodes = c(3, 5, 16))
Variables actually used in tree construction:
[1] "Age" "HBV" "EtOH" "LFT"
Number of terminal nodes: 6
Residual mean deviance: 1.915 = 411.8 / 215
Misclassification error rate: 0.4434 = 98 / 221

plot(hepcut, col=8)

text(hepcut)

Age < 62.5

HBV:a

Age < 46.5

EtOH:a

LFT:a

I

I II

II

III

II
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EXAMPLE 7.5 PREDICTING THE OUTCOME OF LABOR NEGOTIA-
TIONS USING A CLASSIFICATION TREE

This is a data set that relates the outcome of labor negotiations (good or bad, as
seen by the workers who are covered by these agreements) to attributes of the
negotiated contract. The data in file labor.csv is available from the UCI Machine
Learning Repository. It includes 57 Canadian contracts, 16 attributes, and an over-
all outcome (0/1) variable. The data set contains many missing variables. For the
construction of the classification tree, we have omitted variables with many missing
values, and we concentrate our analysis on the following four attributes: duration
of the contract, wage increase in the first year of the contract, the number of
weekly hours negotiated for, and the quality of the vacation benefit package (cat-
egorical on a nominal scale). The objective is to predict the overall quality of the
contract.

The first tree with five terminal nodes has one split that leads to identical clas-
sifications. Node 2 leads to identical results when splitting on hours (relative to
38.5), and this node and the tree below it can be snipped off. The simplified tree
misclassifies 3/47 or 6.4% of the contracts. Contracts with a low first year wage
increase are considered bad. Contracts with large first year wage increase and aver-
age to generous vacation packages are judged good. It is interesting to learn that
contracts with large first year wage increases, but below-average vacation packages
and large negotiated hours are perceived as bad contracts. Workers in Canada value
their free time.

library(tree)

## read the data
labor <- read.csv("C:/DataMining/Data/labor.csv")
labor[1:3,]
## omit variables with lots of missing values
ll=labor[,c(-3:-5,-7:-11,-13:-16)]
ll[1:3,]

levels(ll[,4]) ## vacation benefits

[1] "average" "below_average" "generous"

levels(ll[,5]) ## response: overall contract quality

[1] "bad" "good"

## constructing the classification tree
labortree <- tree(Class ~., data = ll)
labortree

node), split, n, deviance, yval, (yprob)
* denotes terminal node

1) root 47 63.420 good ( 0.40426 0.59574 )
2) WageIncY1 < 2.65 14 7.205 bad ( 0.92857 0.07143 )

4) Hours < 38.5 6 5.407 bad ( 0.83333 0.16667 ) *
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5) Hours > 38.5 8 0.000 bad ( 1.00000 0.00000 ) *
3) WageIncY1 > 2.65 33 31.290 good ( 0.18182 0.81818 )
6) Vacation: below_average 12 16.640 good ( 0.50000 0.50000 )
12) Hours < 39 6 5.407 good ( 0.16667 0.83333 ) *
13) Hours > 39 6 5.407 bad ( 0.83333 0.16667 ) *
7) Vacation: average,generous 21 0.000 good ( 0.00000 1.00000 ) *

summary(labortree)

Classification tree:
tree(formula = Class ~ ., data = ll)
Variables actually used in tree construction:
[1] "WageIncY1" "Hours" "Vacation"
Number of terminal nodes: 5
Residual mean deviance: 0.3862 = 16.22 / 42
Misclassification error rate: 0.06383 = 3 / 47

plot(labortree, col=8)
text(labortree, digits=2)

WageIncY1 < 2.65

Hours < 38.5 Vacation:b

Hours < 39

bad bad

good bad

good

p1=snip.tree(labortree,nodes=2)
p1

node), split, n, deviance, yval, (yprob)
* denotes terminal node

1) root 47 63.420 good ( 0.40426 0.59574 )
2) WageIncY1 < 2.65 14 7.205 bad ( 0.92857 0.07143 ) *
3) WageIncY1 > 2.65 33 31.290 good ( 0.18182 0.81818 )
6) Vacation: below_average 12 16.640 good ( 0.50000 0.50000 )
12) Hours < 39 6 5.407 good ( 0.16667 0.83333 ) *
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13) Hours > 39 6 5.407 bad ( 0.83333 0.16667 ) *
7) Vacation: average,generous 21 0.000 good ( 0.00000 1.00000 ) *

summary(p1)

Classification tree:
snip.tree(tree = labortree, nodes = 2)
Variables actually used in tree construction:
[1] "WageIncY1" "Vacation" "Hours"
Number of terminal nodes: 4
Residual mean deviance: 0.419 = 18.02 / 43
Misclassification error rate: 0.06383 = 3 / 47

plot(p1)
text(p1)

WageIncY1 < 2.65

Vacation:b

Hours < 39

bad

good bad

good

EXAMPLE 7.6 DIABETES AMONG PIMA INDIANS

The data in the file PimaIndians.csv are taken from the UCI Machine Learning
Repository. The data set consists of 768 females at least 21 years old and of
Pima Indian heritage. The response variable is the absence/presence of diabetes
(coded 0/1, in the variable Class). The objective is to predict the presence of
diabetes from the following eight continuous risk factors:

• Number of pregnancies

• Plasma glucose concentration determined by an oral glucose tolerance test

• Diastolic blood pressure (mmHg)

• Triceps skin fold thickness (mm)

• 2-h serum insulin
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• Body mass index [weight in kilograms/(height in meters)2]

• Diabetes pedigree function

• Age (years)

Several techniques can be used for the purpose of classifying Pima Indians into
the diabetes/no diabetes groups, including logistic regression, classification trees,
and linear or quadratic discriminant functions. Here we illustrate two techniques:
logistic regression and classification trees.

## read the data and create plots

PimaIndians <- read.csv("C:/DataMining/Data/PimaIndians.csv")

PimaIndians

plot(PimaIndians)

PI=data.frame(PimaIndians)
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Method 1: Logistic regression The result of the logistic regression fit on all
eight covariates (all eight covariates are continuous) is shown below. The model
can be simplified as several predictors are not significant. We simplify the model
through stepwise backward elimination. Triceps skinfold thickness is the first vari-
able to be omitted. Estimating the simplified model, we find that age can be omitted
next. Estimating the model without triceps skinfold thickness and age, we find that
serum insulin can be dropped from the model. This leaves a model with five predic-
tors: number of pregnancies, glucose, diastolic blood pressure, body mass index,
and diabetes pedigree. As expected, blood glucose turns out to be an important
determinant for the diagnosis of diabetes.

We split the data set into two equal halves. We fit the two models (the model
with all eight covariates and the simplified model) on the first half and predict
the probabilities of the two outcome categories for the subjects in the second half
of the data set. We classify a subject into the group with the highest predicted
probability. We find that the logistic regression model misclassifies 25% of the
subjects. We do the same for the simplified model and find that the difference in
the misclassification rates between the full and the simplified models is negligible
(24.7% vs 26.0%).

## logistic regression model
## mm1: model fitted to all data
mm1=glm(Class~.,family=binomial,data=PI)
mm1
summary(mm1)

Call:
glm(formula = Class ~ ., family = binomial, data = PI)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.5566 -0.7274 -0.4159 0.7267 2.9297

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.4046964 0.7166359 -11.728 < 2e-16 ***
NuPregnancy 0.1231823 0.0320776 3.840 0.000123 ***
Glucose 0.0351637 0.0037087 9.481 < 2e-16 ***
DiastolicBP -0.0132955 0.0052336 -2.540 0.011072 *
TricepsSkinFoldThickness 0.0006190 0.0068994 0.090 0.928515
SerumInsulin -0.0011917 0.0009012 -1.322 0.186065
BodyMassIndex 0.0897010 0.0150876 5.945 2.76e-09 ***
DiabetesPedigree 0.9451797 0.2991475 3.160 0.001580 **
Age 0.0148690 0.0093348 1.593 0.111192
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 993.48 on 767 degrees of freedom
Residual deviance: 723.45 on 759 degrees of freedom
AIC: 741.45

Number of Fisher Scoring iterations: 5
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## simplifying the model through backward elimination
RPI=PI[,-4] ## dropping triceps skin fold thickness
mm1=glm(Class~.,family=binomial,data=RPI)
mm1
summary(mm1)
RPI=RPI[,-7] ## dropping age
mm1=glm(Class~.,family=binomial,data=RPI)
mm1
summary(mm1)
RPI=RPI[,-4] ## dropping serum insulin
RPI[1:3,]
mm1=glm(Class~.,family=binomial,data=RPI)
mm1
summary(mm1)

Call:
glm(formula = Class ~ ., family = binomial, data = RPI)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.7931 -0.7362 -0.4188 0.7251 2.9555

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.954952 0.675823 -11.771 < 2e-16 ***
NuPregnancy 0.153492 0.027835 5.514 3.5e-08 ***
Glucose 0.034658 0.003394 10.213 < 2e-16 ***
DiastolicBP -0.012007 0.005031 -2.387 0.01700 *
BodyMassIndex 0.084832 0.014125 6.006 1.9e-09 ***
DiabetesPedigree 0.910628 0.294027 3.097 0.00195 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 993.48 on 767 degrees of freedom
Residual deviance: 728.56 on 762 degrees of freedom
AIC: 740.56

Number of Fisher Scoring iterations: 5

## evaluation of the full model
## split the data set into a training (50%) and a test (evaluation)
## set (50%)
set.seed(1)
n=length(PI$Class)
n
n1=floor(n*(0.5))
n1
n2=n-n1
n2
train=sample(1:n,n1)

PI1=data.frame(PI[train,])
PI2=data.frame(PI[-train,])
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## mm2: model fitted on the training data set
mm2=glm(Class~.,family=binomial,data=PI1)
mm2
summary(mm2)

## create predictions for the test (evaluation) data set
gg=predict(mm2,newdata=PI2,type= "response")
gg
hist(gg)
plot(PI$Class[-train]~gg)

## coding as 1 if probability 0.5 or larger
gg1=floor(gg+0.5)
ttt=table(PI$Class[-train],gg1)
ttt

gg1
0 1

0 215 32
1 63 74

error=(ttt[1,2]+ttt[2,1])/n2
error

[1] 0.2473958

## evaluation of the simplified model
## mm2: model fitted on the training data set
mm2=glm(Class~NuPregnancy+Glucose+DiastolicBP+BodyMassIndex+

+ DiabetesPedigree,family=binomial,data=PI1)
mm2
summary(mm2)

## create predictions for the test (evaluation) data set
gg=predict(mm2,newdata=PI2,type= "response")
gg
hist(gg)
plot(PI$Class[-train]~gg)

## coding as 1 if probability 0.5 or larger
gg1=floor(gg+0.5)
ttt=table(PI$Class[-train],gg1)
ttt

gg1
0 1

0 212 35
1 65 72

error=(ttt[1,2]+ttt[2,1])/n2
error

[1] 0.2604167
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Method 2: Classification Trees We start by fitting a fairly large tree to the
data. Cross-validation indicates that the resulting tree can be cut back to a smaller
size. The tree with seven terminal nodes shown in the following has two splits that
lead to identical classifications. Node 7 leads to identical results when splitting on
blood glucose (relative to 157.5), and we notice identical classification results in
the subtrees below node 2. This indicates that nodes 2 and 7 and their subtrees can
be snipped off. Snipping off nodes 2 and 7 leads to our final tree. Women with
blood glucose less than 127.5 and women with body mass index less than 29.95
are put in the “no diabetes” class. Women with blood glucose larger than 127.5
and body mass index larger than 29.95 are put in the diabetes risk group. This
rule misclassifies 175/768 = 0.23 of the women. Classifying on glucose alone is
slightly worse, with misclassification rate 203/768 = 0.26.

## read the data
PimaIndians <- read.csv("C:/DataMining/Data/PimaIndians.csv")
PimaIndians

## CART analysis
library(tree)
PimaIndians$Class=factor(PimaIndians$Class)
## constructing the classification tree
PItree <- tree(Class ~., data = PimaIndians,mindev=0.01)
PItree

node), split, n, deviance, yval, (yprob)
* denotes terminal node

1) root 768 993.50 0 ( 0.65104 0.34896 )
2) Glucose < 127.5 485 477.00 0 ( 0.80619 0.19381 )

4) Age < 28.5 271 157.50 0 ( 0.91513 0.08487 )
8) BodyMassIndex < 30.95 151 21.27 0 ( 0.98675 0.01325 ) *
9) BodyMassIndex > 30.95 120 111.30 0 ( 0.82500 0.17500 ) *

5) Age > 28.5 214 272.00 0 ( 0.66822 0.33178 )
10) BodyMassIndex < 26.35 41 15.98 0 ( 0.95122 0.04878 ) *
11) BodyMassIndex > 26.35 173 232.70 0 ( 0.60116 0.39884 )

22) Glucose < 99.5 55 52.16 0 ( 0.81818 0.18182 ) *
23) Glucose > 99.5 118 163.60 0 ( 0.50000 0.50000 )
46) DiabetesPedigree < 0.561 84 113.40 0 ( 0.59524 0.40476 ) *
47) DiabetesPedigree > 0.561 34 39.30 1 ( 0.26471 0.73529 )

94) NuPregnancy < 6.5 21 28.68 1 ( 0.42857 0.57143 ) *
95) NuPregnancy > 6.5 13 0.00 1 ( 0.00000 1.00000 ) *

3) Glucose > 127.5 283 377.30 1 ( 0.38516 0.61484 )
6) BodyMassIndex < 29.95 76 94.80 0 ( 0.68421 0.31579 )
12) Glucose < 145.5 41 34.14 0 ( 0.85366 0.14634 ) *
13) Glucose > 145.5 35 48.49 1 ( 0.48571 0.51429 ) *

7) BodyMassIndex > 29.95 207 243.60 1 ( 0.27536 0.72464 )
14) Glucose > 157.5 115 153.90 1 ( 0.39130 0.60870 ) *
15) Glucose > 157.5 92 71.25 1 ( 0.13043 0.86957 ) *

summary(PItree)

Classification tree:
tree(formula = Class ~ ., data = PimaIndians)
Variables actually used in tree construction:
[1] "Glucose" "Age" "BodyMassIndex" "DiabetesPedigree"
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[5] "NuPregnancy"
Number of terminal nodes: 11
Residual mean deviance: 0.8594 = 650.6 / 757
Misclassification error rate: 0.2057 = 158 / 768

plot(PItree, col=8)
text(PItree, digits=2)

## cross-validation to prune the tree
set.seed(2)
cvPI <- cv.tree(PItree, K=10)
cvPI$size

[1] 11 10 9 8 7 6 5 4 3 2 1

cvPI$dev

[1] 881.4488 834.1200 830.0404 835.6352 781.2184 795.9745 823.2477 828.7466
[9] 876.0231 886.6899 996.6544

plot(cvPI, pch=21, bg=8, type="p", cex=1.5, ylim=c(700,1000))
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PIcut <- prune.tree(PItree, best=7)
PIcut

node), split, n, deviance, yval, (yprob)
* denotes terminal node
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1) root 768 993.50 0 ( 0.65104 0.34896 )
2) Glucose < 127.5 485 477.00 0 ( 0.80619 0.19381 )

4) Age > 28.5 271 157.50 0 ( 0.91513 0.08487 )
8) BodyMassIndex < 30.95 151 21.27 0 ( 0.98675 0.01325 ) *
9) BodyMassIndex > 30.95 120 111.30 0 ( 0.82500 0.17500 ) *

5) Age > 28.5 214 272.00 0 ( 0.66822 0.33178 )
10) BodyMassIndex < 26.35 41 15.98 0 ( 0.95122 0.04878 ) *
11) BodyMassIndex > 26.35 173 232.70 0 ( 0.60116 0.39884 ) *

3) Glucose > 127.5 283 377.30 1 ( 0.38516 0.61484 )
6) BodyMassIndex < 29.95 76 94.80 0 ( 0.68421 0.31579 ) *
7) BodyMassIndex > 29.95 207 243.60 1 ( 0.27536 0.72464 )
14) Glucose < 157.5 115 153.90 1 ( 0.39130 0.60870 ) *
15) Glucose > 157.5 92 71.25 1 ( 0.13043 0.86957 ) *

summary(PIcut)

Classification tree:
snip.tree(tree = PItree, nodes = c(15, 9, 8, 6, 14, 10, 11))
Variables actually used in tree construction:
[1] "Glucose" "Age" "BodyMassIndex"
Number of terminal nodes: 7
Residual mean deviance: 0.9215 = 701.2 / 761
Misclassification error rate: 0.2279 = 175 / 768

plot(PIcut, col=8)
text(PIcut)

Glucose < 127.5

Age < 28.5

BodyMassIndex < 30.95 BodyMassIndex < 26.35

BodyMassIndex < 29.95

Glucose < 157.5

0 0 0 0

0

1 1

P1=snip.tree(PIcut,nodes=c(2,7))

P1

node), split, n, deviance, yval, (yprob)
* denotes terminal node

1) root 768 993.5 0 ( 0.6510 0.3490 )
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2) Glucose < 127.5 485 477.0 0 ( 0.8062 0.1938 ) *
3) Glucose > 127.5 283 377.3 1 ( 0.3852 0.6148 )
6) BodyMassIndex < 29.95 76 94.8 0 ( 0.6842 0.3158 ) *
7) BodyMassIndex > 29.95 207 243.6 1 ( 0.2754 0.7246 ) *

summary(P1)

Classification tree:
snip.tree(tree = PIcut, nodes = c(2, 7))
Variables actually used in tree construction:
[1] "Glucose" "BodyMassIndex"
Number of terminal nodes: 3
Residual mean deviance: 1.066 = 815.4 / 765
Misclassification error rate: 0.2279 = 175 / 768

plot(P1)

text(P1)

Glucose < 127.5

BodyMassIndex < 29.95

0

0 1

The R programs can be found on the webpage that accompanies this book.

EXAMPLE 7.7 PREDICTING THE CPU PERFORMANCE WITH
REGRESSION AND REGRESSION TREES

The data in the file cpu.csv are taken from the UCI Machine Learning Repository.
The data set consists of 209 different computer configurations, as specified by the
following six explanatory variables:
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• Cycle Time (MYCT, in nanoseconds),

• Min Main Memory (MMIN, in kilobytes),

• Max Main Memory (MMAX, in kilobytes),

• Cache of Main Memory (CACH, in kilobytes),

• Min Number of Channels,

• Max Number of Channels.

The published and the estimated relative CPU performances [PRP (published
relative performance) and ERP (event-related potentials)] are the two response
variables that need to be explained. Here we consider PRP as the response.

We use this data set (i) to obtain a prediction equation for the CPU perfor-
mance in terms of the six numeric interval-scaled attributes and (ii) to construct a
regression tree.
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## read the data and create a matrix plot

cpu <- read.csv("C:/DataMining/Data/cpu.csv")

cpu

xx=cpu[,c(-1,-9)]

xx[1:3,]

MYCT MMIN MMAX CACH CHMIN CHMAX PRP
1 125 256 6000 256 16 128 198
2 29 8000 32000 32 8 32 269
3 29 8000 32000 32 8 32 220

plot(xx)

## regression model

regfit=lm(PRP~.,data=xx)

regfit

summary(regfit)

Call:
lm(formula = PRP ~., data = xx)

Residuals:
Min 1Q Median 3Q Max

-195.82 -25.17 5.40 26.52 385.75

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.589e+01 8.045e+00 -6.948 5.00e-11 ***
MYCT 4.885e-02 1.752e-02 2.789 0.0058 **
MMIN 1.529e-02 1.827e-03 8.371 9.42e-15 ***
MMAX 5.571e-03 6.418e-04 8.681 1.32e-15 ***
CACH 6.414e-01 1.396e-01 4.596 7.59e-06 ***
CHMIN -2.704e-01 8.557e-01 -0.316 0.7524
CHMAX 1.482e+00 2.200e-01 6.737 1.65e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 59.99 on 202 degrees of freedom
Multiple R-squared: 0.8649, Adjusted R-squared: 0.8609
F-statistic: 215.5 on 6 and 202 DF, p-value: < 2.2e-16

## cross-validation (leave one out): regression model on all

## six regressors

n=length(cpu$PRP)

diff=dim(n)

percdiff=dim(n)

for (k in 1:n) {

train1=c(1:n)
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train=train1[train1!=k]

m1=lm(PRP~.,data=xx[train,])

pred=predict(m1,newdat=xx[-train,])

obs=xx[-train,7]

diff[k]=obs-pred

percdiff[k]=abs(diff[k])/obs

}

me=mean(diff)

rmse=sqrt(mean(diff**2))

mape=100*(mean(percdiff))

me # mean error

[1] -0.3430341

rmse # root mean square error

[1] 69.64521

mape # mean absolute percent error

[1] 79.1892

library(tree)

## Construct the regression tree

cputree <- tree(PRP ~., data=xx, mindev=0.1, mincut=1)

cputree <- tree(PRP ~., data= xx, mincut=1)

cputree

summary(cputree)

plot(cputree, col=8)

text(cputree, digits=2)

## Use cross-validation to prune the regression tree

set.seed(2)

cvcpu <- cv.tree(cputree, K=10)

cvcpu$size

[1] 7 6 5 4 3 2 1

cvcpu$dev

[1] 1634992 1764535 1748460 2082174 2082174 2619591 5435820

plot(cvcpu, pch=21, bg=8, type="p", cex=1.5,

+ ylim=c(0,6000000))
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size
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cpucut <- prune.tree(cputree, best=7)

cpucut

node), split, n, deviance, yval
* denotes terminal node

1) root 209 5380000 105.60
2) MMAX < 48000 205 2218000 88.93

4) MMAX < 22485 178 511000 57.80
8) CACH < 27 141 97850 39.64 *
9) CACH > 27 37 189500 127.00
18) CACH < 96.5 31 65600 105.40 *
19) CACH > 96.5 6 34840 238.50 *

5) MMAX > 22485 27 397100 294.10
10) MMIN < 12000 21 150700 244.60
20) CHMIN < 7 5 3049 143.60 *
21) CHMIN > 7 16 80730 276.10 *

11) MMIN > 12000 6 14190 467.70 *
3) MMAX > 48000 4 177000 961.20 *

summary(cpucut)

Regression tree:
tree(formula = PRP ~., data = xx, mincut = 1)
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Variables actually used in tree construction:
[1] "MMAX" "CACH" "MMIN" "CHMIN"
Number of terminal nodes: 7
Residual mean deviance: 2343 = 473200 / 202
Distribution of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-325.200 -19.640 -4.638 0.000 20.360 188.800

plot(cpucut, col=8)

text(cpucut)

MMAX < 48000

MMAX < 22485

CACH < 27
CACH < 96.5

MMIN < 12000
CHMIN < 7

39.64 105.40 238.50 143.60 276.10 467.70

961.20

Interpretation of the Results The regression of published performance (PRP)
on all six regressor variables explains 86.4% of the variability in PRP and leads
to an in-sample root mean square error of 60.0. The leave-one-out cross-validation
results in a root mean square error of 69.6, slightly larger than the in-sample
estimate. The mean absolute percent error (79%) is certainly not very impressive.

The regression tree performs better, leading to a root mean square error of√
2343 = 48.4. It uses four of the six variables (MMAX, MMIN, CACH, and

CHMIN) and results in seven terminal nodes. For example, for a computer with
MMAX of less than 22,485 and CACH of less than 27 the model predicts a
PRP performance of 39.64 (terminal node under 8). The performance of the third
computer on the list, with MMAX = 32, 000, MMIN = 8000, CACH = 32, and
actual PRP = 220, is predicted as 276.10.
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EXAMPLE 7.8 INFERRING THE CULTIVAR OF WINE USING CLAS-
SIFICATION TREES, DISCRIMINANT ANALYSIS, AND MULTINOMIAL
LOGISTIC REGRESSION

The data in the file wine.csv (taken from the UCI Machine Learning Repository) are
the results of a chemical analysis of 174 Italian wines from three known cultivars
(a cultivar is a group of grapes selected for desirable characteristics that can be
maintained by propagation). The chemical analysis determined the quantities of the
following 13 different constituents:

• Alcohol

• Malic acid

• Ash

• Alkalinity of ash

• Magnesium

• Total phenols

• Flavanoids

• Nonflavanoid phenols

• Proanthocyanins

• Color intensity

• Hue

• OD280/OD315 of diluted wines

• Proline.

The objective is to classify the 174 wines on the basis of their attributes and
to predict their cultivar. We approach this problem from different vantage points:
(i) we use classification trees; (ii) we cluster the 174 wines on the basis of their
13 attributes and check whether the resulting clusters agree with the provided
information on the cultivars; (iii) we use linear and quadratic discriminant analysis
for classifying the information into three groups; and (iv) we use multinomial
logistic regression to model the relationship between cultivar and the attributes and
to classify the wines. All analyses indicate that this is quite an easy classification
problem.

## read the data and plots

wine <- read.csv("C:/DataMining/Data/wine.csv")

wine[1:3,]

plot(wine)
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Method 1: Classification trees
## CART
library(tree)
wine$Class=factor(wine$Class)
## constructing the classification tree
Winetree <- tree(Class ~., data = wine)
Winetree
summary(Winetree)
plot(Winetree, col=8)
text(Winetree, digits=2)

## cross-validation to prune the tree
set.seed(1)
cvWine <- cv.tree(Winetree, K=10)
cvWine$size

[1] 7 6 5 4 3 2 1

cvWine$dev

[1] 144.7246 156.8253 157.2120 130.6236 176.0941 271.4292 389.3242

plot(cvWine, pch=21, bg=8, type="p", cex=1.5, ylim=c(100,400))
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Winecut <- prune.tree(Winetree, best=4)
Winecut
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node), split, n, deviance, yval, (yprob)
* denotes terminal node

1) root 178 386.600 2 ( 0.33146 0.39888 0.26966 )
2) Flavanoids < 1.575 62 66.240 3 ( 0.00000 0.22581 0.77419 )

4) Color < 3.825 13 0.000 2 ( 0.00000 1.00000 0.00000 ) *
5) Color > 3.825 49 9.763 3 ( 0.00000 0.02041 0.97959 ) *

3) Flavanoids > 1.575 116 160.800 1 ( 0.50862 0.49138 0.00000 )
6) Proline < 724.5 54 9.959 2 ( 0.01852 0.98148 0.00000 ) *
7) Proline > 724.5 62 29.660 1 ( 0.93548 0.06452 0.00000 ) *

summary(Winecut)

Classification tree:
snip.tree(tree = Winetree, nodes = c(5, 6, 7))
Variables actually used in tree construction:
[1] "Flavanoids" "Color" "Proline"
Number of terminal nodes: 4
Residual mean deviance: 0.2838 = 49.39 / 174
Misclassification error rate: 0.03371 = 6 / 178

plot(Winecut, col=8)
text(Winecut)

Flavanoids < 1.575

Color < 3.825 Proline < 724.5

2 3

2 1

Interpretation of the Results A fairly simple model with just three attributes
(flavanoids, proline, and color) and four terminal nodes is quite successful in classi-
fying the cultivar. Wines with flavanoids greater than 1.575 and proline greater than
724.5 are classified as coming from cultivar 1 (node 7). Wines with flavanoids less
than 1.575 and color greater than 3.825 are classified as coming from cultivar 3.
Wines with flavanoids less than 1.575 and color less than 3.825, and wines with
flavanoids greater than 1.575 and proline less than 724.5 are classified as coming
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from cultivar 2. This simple rule misclassifies 6 of 178 wines, for a misclassification
rate of 3.4%.

Method 2: Clustering We standardize the attributes as their units are consid-
erably different. Applying the k -means clustering algorithm to the 13-dimensional
attribute vector leads to an excellent prediction of the cultivars. Only 6 out of 176
wines are misclassified. Note that clustering is an unsupervised learning technique.
The composition of the groups that we get from clustering is very close to the
true grouping of the cultivars. But because clustering is unsupervised learning,
clustering cannot tell us which cultivars the groupings represent.
## Clustering

## standardizing the attributes as units considerably different
wines=matrix(nrow=length(wine[,1]),ncol=length(wine[1,]))
for (j in 2:14) {
wines[,j]=(wine[,j]-mean(wine[,j]))/sd(wine[,j])
}
wines[,1]=wine[,1]
winesr=wines[,-1]
winesr[1:3,]
## kmeans clustering with 13 standardized attributes
grpwines <- kmeans(winesr, centers=3, nstart=20)
grpwines

K-means clustering with 3 clusters of sizes 51, 65, 62

Cluster means:
[,1] [,2] [,3] [,4] [,5] [,6]

1 0.1644436 0.8690954 0.1863726 0.5228924 -0.07526047 -0.97657548
2 -0.9234669 -0.3929331 -0.4931257 0.1701220 -0.49032869 -0.07576891
3 0.8328826 -0.3029551 0.3636801 -0.6084749 0.57596208 0.88274724

[,7] [,8] [,9] [,10] [,11] [,12]
1 -1.21182921 0.72402116 -0.77751312 0.9388902 -1.1615122 -1.2887761
2 0.02075402 -0.03343924 0.05810161 -0.8993770 0.4605046 0.2700025
3 0.97506900 -0.56050853 0.57865427 0.1705823 0.4726504 0.7770551

[,13]
1 -0.4059428
2 -0.7517257
3 1.1220202

Clustering vector:
[1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

[38] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 1 2 2 2 2 2 2 2 2 2 2 2 3
[75] 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[112] 2 2 2 2 2 2 2 1 2 2 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Within cluster sum of squares by cluster:
[1] 326.3537 558.6971 385.6983
(between_SS / total_SS = 44.8 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
[6] "betweenss" "size"
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grpwines$cluster ## displaying clustering results
## a bold face entry indicates a classification error

[1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[38] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 1 2 2 2 2 2 2 2 2 2 2 2 3
[75] 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 1 2 2 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

wine$Class ## actual classes

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[149] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Levels: 1 2 3

## 6 mistakes made among 178 wines

Method 3: Discriminant analysis Here we use linear and quadratic discrimi-
nant analysis to classify the data into three groups. The linear discriminant analysis
makes no classification error, while the quadratic discriminant analysis misclassi-
fies one item. Cross-validation (where we leave out one item in the construction
of the classifier and then apply the rule to the item that has been left out) leads to
very similar results (two errors for linear, and one error for quadratic discriminant
analysis).

## Discriminant analysis (linear/quadratic)

library(MASS)

## linear discriminant analysis using the standardized

## attributes

wines[1:3,]

ws=data.frame(wines)

ws[1:3,]

zlin=lda(X1~.,ws,prior=c(1,1,1)/3)

zlin

## quadratic discriminant analysis

zqua=qda(X1~.,ws,prior=c(1,1,1)/3)

zqua

n=dim(ws)[1]

errorlin=1-(sum(ws$X1==predict(zlin,ws)$class)/n)

errorlin

[1] 0

errorqua=1-(sum(ws$X1==predict(zqua,ws)$class)/n)

errorqua
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[1] 0.005617978

neval=1

corlin=dim(n)

corqua=dim(n)

## leave one out evaluation

for (k in 1:n) {

train1=c(1:n)

train=train1[train1!=k]

## linear discriminant analysis

zlin=lda(X1~.,ws[train,],prior=c(1,1,1)/3)

corlin[k]=ws$X1[-train]==predict(zlin,ws[-train,])$class

## quadratic discriminant analysis

zqua=qda(X1~.,ws[train,],prior=c(1,1,1)/3)

corqua[k]=ws$X1[-train]==predict(zqua,ws[-train,])$class

}

merrlin=1-mean(corlin)

merrlin

[1] 0.01123596

merrqua=1-mean(corqua)

merrqua

[1] 0.005617978

Method 4: Multinomial logistic regression Finally, we estimate a multino-
mial logistic regression model on the standardized attributes and use the predicted
class probabilities to classify the wines into three groups. The multinomial logis-
tic model with all 13 attributes is certainly overspecified, and the large standard
errors of the estimated coefficients make an interpretation of the model impossible.
However, a rule that assigns a wine to the cultivar that has the largest predicted
probability leads to a perfect in-sample classification. Of course, a more reliable
evaluation would use cross-validation and split the data set into estimation and
evaluation data sets. We suggest that you do this as an exercise.

## Multinomial logistic regression

## using VGAM

library(VGAM)

ws=data.frame(wines)

gg <- vglm(X1 ~ .,multinomial,data=ws)

summary(gg)
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predict(gg) ## log-odds relative to last group

round(fitted(gg),2) ## probabilities

cbind(round(fitted(gg),2),ws$X1)

## perfect classification
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Box plots:
data preprocessing:

alumni donations case study, 20–31
birth data case study, 13–17
orange juice sales case study, 31–39

multinomial logistic regression, forensic
glass case study, 134–147

nearest neighbor analysis, forensic glass
case study, 118–122

penalty-based variables, LASSO
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case study, 81–82

Burt’s structural holes, network data
mining, 278

Business analytics, data mining and, 5–6

Categorical outcome data, data mining
and, 2

Categorical variables:
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study, 29–31
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interaction detection, 187–188
hierarchical clustering procedures,

213–217
naive Bayesian analysis, 126–130

Chi-square automatic interaction detection
(CHAID), 186–188

Classification:
discriminant analysis, 150–160
Fisher’s linear discriminant function,

153–160
nearest neighbor analysis, 115–125
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performance evaluation, 108–114
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algorithm, decision tree predictions:

basic principles, 161–167
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prostate cancer data example, 170–179
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Classification trees:
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197–201, 207–212, 217–218
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normal distribution mixtures,
204–207

E-step, 206
M-step, 206–207

hierarchical procedures, 212–217
k -means clustering, 196–197
monthly U.S. unemployment rates

example, 201–204, 218–219
Complete-linkage clustering, 213–217
Conditional probability, market basket

analysis, 221
Confidence parameters, market basket

analysis, 221–222
Continuous variables, decision tree

splitting, 164–167
Corpus, text data mining, 258–259
Cost complexity, decision tree predictions,

prostate cancer data, 171–179
contourplot, birth data preprocessing case

study, 15–17
Covariance matrices, cluster analysis,

expectation-maximization algorithm,
European protein consumption
example, 208–212

Cross-validation:
decision tree predictions:

deviance node impurity, 185–186
prostate cancer data, 170–179

k -nearest neighbor algorithm, 117–125
linear discriminant function analysis,

forensic glass case study, 159
local polynomial regression, 56–65
logistic regression, delayed airplanes

data, 93–100
penalty-based variable selection, LASSO

algorithm, 73–82
prostate cancer data, 77–78

standard linear regression, automobile
fuel efficiency example, 46–47

Cross-validation cost (CV cost), decision
tree partitioning, 177–179

Cutoff:
probability-based decisions, 108–109
sensitivity and specificity, 109
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text data, 258–271
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Data warehousing, data mining and, 5
Death penalty data, logistic regression,

87–92
Decision trees, 161–184

chi-square automatic interaction
detection, 186–188

ensemble construction methods, 188–191
motorcycle acceleration example,

179–182
prostate cancer data case study, 167–179

Delayed airplanes data:
logistic regression, 92–100
naive Bayesian analysis, 127–130

Dendrogram:
European protein consumption example,

217–218
hierarchical clustering procedures,

212–217
Density estimation:

local polynomial regression, 58–65
nitric oxide emissions, 62–65
Old Faithful example, 59–61

network data mining, friendship
connections example, 285–292

Deviance estimation, logistic regression, 86
Deviance node impurity, decision trees:

characteristics of, 162–167
prostate cancer data, 171–179
rpart and tree software systems, 185–186

Dimension reduction:
European protein consumption example,

239–243
factor models and components, 235–246
monthly U.S. unemployment rates

example, 243–246
multicollinear regressions, 247–256

Discriminant analysis:
classification and, 150–160
German credit data case study, 154–156

Distance measure, hierarchical clustering
procedures, 212–217

Divide-and-conquer partitioning, in
decision trees, 163–167

Divisive algorithms, hierarchical clustering
procedures, 212–217

Document comparison, text data mining,
259–271

Edge list, network data mining, 272–291
friendship connections example,

283–292
Elasticity parameters, orange juice sales

case study, data preprocessing and,
37–38

Ensemble classifiers, classification using,
188–191

Entropy criterion, decision tree analysis,
166–167

Epanechnikov weight function, local
polynomial regression, 56–65

Error sum of squares, standard linear
regression, 41–42

Euclidean distance:
hierarchical clustering procedures,

213–217
European protein consumption

example, 217–218
k -means clustering, 196–197
k -nearest neighbor algorithm, 116–125

European protein consumption example:
cluster analysis, 197–201, 207–212,

217–218
factor models, dimension reduction,

238–243
Evaluation (testing), logistic regression,

delayed airplanes data, 93–100
Evaluation data set, graphical user

interface, 195
Expectation-maximization (EM) algorithm,

cluster analysis, normal distribution
mixtures, 204–207

E-step, 206
M-step, 206–207

Expected cost of misclassification,
discriminant analysis, 150–160

Explanatory variables, logistic regression,
delayed airplanes data, 92–100

Factor models:
dimension reduction, 235–246
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Factor models (Continued)
European protein consumption example,

238–243
monthly U.S. unemployment rates

example, 243–246
False discovery rate (FDR), statistical

modeling, parsimony in, 67–70
False negative rate, probability-based

decisions, 108–109
False positive rate, probability-based

decisions, 108–109
Feature advertisement effects, orange juice

sales case study, 34–37
Features, classification, nearest neighbor

analysis, 115–125
Fisher’s linear discriminant function,

153–160
iris data, 156–157

decision tree analysis, 182–184
Fitted value:

multinomial logistic regression, forensic
glass case study, 137–147

standard linear regression, 40
Folds, decision tree partitioning, 177–179
Forecasting:

aggregated techniques for, 188–191
multicollinear regressions, partial least

squares, monthly U.S. unemployment
rates example, 254–256

Forensic glass case study:
linear discriminant function analysis,

157–159
multinomial logistic regression, 134–147
nearest neighbor analysis, 117–122

Forest-RI, classification using, 190–191
Frequency distribution table, birth data

preprocessing case study, 15–17
Friendship connections, network data

mining, 278–292

Generalized cross-validation (GCV), local
polynomial regression, 56–65

Generalized linear models (GLM), logistic
regression, 87

Generated data example, multicollinear
regression, partial least squares,
249–251

Gentzkow/Shapiro estimation, text data
mining, 268–271

Gephi software, 272
German credit data:

cutoff and receiver operating
characteristic function, 109–114

discriminant function analysis, 154–156
logistic regression, 103–107
nearest neighbor analysis, 122–125

Gini index, decision tree analysis, 167, 186
Graphical user interface, R package rattle,

193–195
Graphics techniques:

network data mining, 274–278
friendship connections example,

284–292
preprocessing case studies, birth data

case study, 10–17

Hamming distance, k -nearest neighbor
algorithm, 117–125

Hard counts, cluster analysis,
expectation-maximization algorithm,
204–207

Hat matrices, local polynomial regression,
57–65

Hidden layers, neural networks, 193
Hierarchical clustering procedures,

212–217
Histograms:

data preprocessing:
alumni donations case study, 18–31
birth data case study, 10–17
orange juice sales case study, 31–39

local polynomial regression:
nitric oxide emissions, 62–65
Old Faithful example, 59–61
smoothing, 58

igraph software, 272, 274–278
Income prediction example, market basket

analysis, 227–234
Indicator variables, alumni donations data

preprocessing case study, 25–31
Information criterion, decision tree analysis,

166–167
Initialization, k -means clustering, 197
In-sample performance, decision tree

analysis, prostate cancer data,
176–179
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Interaction effects, multinomial logistic
regression, forensic glass case study,
146–147

Inverse multinomial logistic regression, text
data mining, 259–260

Inverse prediction, text data mining, 260
Iris data:

decision tree analysis, 182–184
Fisher’s linear discriminant function,

156–157

K-direction partial least squares (PLS(K)),
multicollinear regressions, 248–256

k -means clustering:
basic principles, 196–197
European protein consumption example,

207–212
expectation-maximization algorithm,

204–207
monthly U.S. unemployment rates

example, 202–204, 243–246
k -nearest neighbor algorithm:

classification applications, 116–125
forensic glass case study, 117–122
k -means clustering, 196–197

Lagrangian multiplier, least absolute
shrinkage and selection operator
algorithm, 72–82

Laplace transform, multinomial logistic
regression, forensic glass case study,
141–147

Lattice (trellis) graphics, data
preprocessing:

birth data case study, 10–17
orange juice sales data, 31–39

Leaf nodes:
decision trees, 162
prostate cancer data example,

170–179
Least absolute shrinkage and selection

operator (LASSO) algorithm:
multicollinear regressions, partial least

squares, monthly U.S. unemployment
rates example, 254–256

multinomial logistic regression, 134
penalty-based variable selection,

multiparameter regression models,
71–82

prostate cancer example:
decision trees, 167–179
multiparameter regression models,

74–78
Least angle regression (LARS) algorithm,

penalty-based variable selection,
72–82

Least squares estimates. See also Partial
least squares (PLS)

local polynomial regression, 56–65
penalty-based variable selection, LASSO

algorithm, 71–82
standard linear regression, 40

levelplot, birth data preprocessing case
study, 15–17

Leverage rules, market basket analysis,
222

Lift charts, logistic regression, delayed
airplanes data, 97–100

Lift rules, market basket analysis, 221
Likelihood function, cluster analysis,

expectation-maximization algorithm,
206–207

Linear discriminant function:
classification, discriminant analysis,

152–160
Fisher’s linear discriminant function,

153–160
forensic glass data case study, 157–159
MBA admission data, 159–160

Linear regression. See also Logistic
regression

automobile fuel efficiency example,
43–47

decision trees, 161
motorcycle acceleration example,

179–182
overfitting effects, 53–54
penalty-based variables, 71–82
principal components analysis,

multicollinear regressions, 247–256
standard model, 40–54
text data mining, Gentzkow/Shapiro

estimation, 268–271
Toyota used-car prices example, 47–51

Linkage criterion, hierarchical clustering
procedures, 213–217

Loadings, factor models, dimension
reduction, 236–246
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Loan acceptance case study, logistic
regression, 100–102

Local polynomial regression:
density estimation and histogram

smoothing, 58
examples and software, 58–65
model selection, 56–57
multiple regression model, 58
nitric oxide emissions, 62–65
Old Faithful example, 59–61
overview, 55–56

locfit R library, local polynomial
regression, 58–65

Logistic regression. See also Linear
regression

binary response data, 83–85
death penalty data, 87–92
decision trees, 161
delayed airplanes data, 92–100
German credit data, 103–107
loan acceptance analysis, 100–102
multinomial techniques, 132–149

computer software, 134
forensic glass case study, 134–147
simple triplet matrix specification,

147–149
new case classification, 86–87
overview, 83
regression coefficients, 85
R estimation, 87
statistical inference, 85–86

Log-likelihood function, cluster analysis,
expectation-maximization algorithm,
206

Majority voting classification, k -nearest
neighbor algorithm, 117–125

Mallows’ Cp statistic:
local polynomial regression, 56–65
standard linear regression, 41–42

Margin of separation, support vector
machine classification, 192

Market basket analysis, 220–234
income prediction, 227–234
online radio example, 221–227

Markov Chain Monte Carlo (MCMC)
methods, cluster analysis,
expectation-maximization algorithm,
207

Marriage and power in fifteenth-century
Florence, network data mining,
274–278

Maximum likelihood estimation:
cluster analysis,

expectation-maximization algorithm,
207

logistic regression, 85–86
death penalty data, 89–92

multinomial logistic regression, 132–134
standard linear regression, 40

Maximum pairwise distance, hierarchical
clustering procedures, 213–217

MBA admission data, linear discriminant
function, 159–160

Mean absolute percent error, standard linear
regression, 42–43

automobile fuel efficiency example,
46–47

Toyota used-car prices example, 50–51
Mean error, standard linear regression,

42–43
automobile fuel efficiency example,

46–47
Toyota used-car prices example, 50–51

Mean square error, linear regression, model
overfitting effects, 53–54

Minimization, k -means clustering, 196–197
Minimum pairwise distance, hierarchical

clustering procedures, 213–217
Minitab program:

graphical user interface, 193–194
logistic regression, death penalty data,

88–92
Misclassification proportion, naive Bayesian

analysis, delayed airplanes data, 130
Mixed probability, cluster analysis,

expectation-maximization algorithm,
204–207

mixOmics software package, 249
mixtools software package, 207
Model fitting:

dimension reduction, 235–246
logistic regression, delayed airplanes

data, 93–100
Modeling problems, data preprocessing:

alumni donations case study, 31
birth data case study, 17
orange juice sales case study, 38–39
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Monthly U.S. unemployment rates example:
cluster analysis, 201–204, 218–219
factor models, dimension reduction,

243–246
multicollinear regressions, partial least

squares:
out-of-sample predictions, 253–256
predictions on past performance,

251–253
mosaic plots, alumni donations data

preprocessing case study, 25–31
Motorcycle acceleration, decision tree

analysis, 179–182
Multicollinearity:

penalty-based variable selection, LASSO
algorithm, 73–82

principal components regression,
247–256

generated data example, 249–251
monthly U.S. unemployment example,

vector autoregression model,
251–253

standard linear regression, 41–42
Multinomial logistic regression,

132–149
computer software, 134
decision trees, 161
forensic glass case study, 134–147
inverse, text data mining, 259–260
simple triplet matrix specification,

147–149
Multiparameter regression models:

multinomial logistic regression, forensic
glass case study, 141–147

penalty-based variable selection, 71–82
Multiple regression model, local

polynomial regression and, 58
Multiplicity problem, statistical modeling

parsimony, false discovery and, 67–70
Multivariate data sets:

cluster analysis,
expectation-maximization algorithm,
205–207

decision trees, chi-square automatic
interaction detection, 186–188

dimension reduction, 236–246
multicollinear regressions, partial least

squares, monthly U.S. unemployment
rates example, 254–256

Naive Bayesian analysis, categorical
predictor variables, 126–130

Nearest neighbor analysis:
classification applications, 115–125
forensic glass case study, 117–122
German credit data, 122–125

Network data mining, 272–291
friendship connections example,

278–292
marriage and power in fifteenth-century

Florence, 274–278
Neural networks, classification using,

192–193
Nitric oxide emissions, local polynomial

regression, 62–65
Nodes and node impurity:

decision trees:
characteristics of, 162–167
R software systems, 185–186

Nodes in network data mining, 272–291
marriage and power in fifteenth-century

Florence example, 275–278
Nonparametric regression:

decision tree predictions, prostate cancer
data example, 170–179

local polynomial regression, 55–65
Normal distribution:

classification, discriminant analysis,
151–160

cluster analysis,
expectation-maximization algorithm,
204–207

European protein consumption
example, 208–212

NP hard problem, 196–197
n × n distance matrix, hierarchical

clustering, 213–217
monthly U.S. unemployment rate

example, 218–219

Odds ratio, logistic regression, 85
Old Faithful example, local polynomial

regression, 59–61
One-step-ahead forecast errors,

multicollinear regressions, partial least
squares, monthly U.S. unemployment
rates example, 254–256

Online radio, market basket analysis,
221–227
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Orange juice sales data case study:
data preprocessing, 31–39
penalty-based variable selection, LASSO

algorithm, 78–82
Outliers, hierarchical clustering, monthly

U.S. unemployment rate example, 219
Out-of-sample prediction:

linear regression, Toyota used-car prices
example, 50–51

multicollinear regressions, partial least
squares, monthly U.S. unemployment
rates example, 253–256

Overfitting:
decision tree predictions, prostate cancer

data example, 170–179
linear regression, mean square error,

53–54

Pairwise correlations:
alumni donations data preprocessing case

study, 28–31
dimension reduction, 236–246

Pajeck software, 272
Parametric properties, regression models,

161
Parsimony, statistical modeling, 67–70
Partial least squares (PLS):

principal components analysis,
multicollinear regressions, 247–256

generated data example, 249–251
monthly U.S. unemployment, vector

autoregressive model, 251–253
text data mining, 268–271

Partitioning, in decision trees, 163–167
prostate cancer data, 177–179

Pearson chi-square statistic, chi-square
automatic interaction detection,
187–188

Penalty-based variables:
multiparameter regression models, 71–82
orange juice sales data case study, 78–82

Political sentiment example, text data
mining, 266–268

Porter stemming algorithm, text data
mining, 258–271

Posterior probability, classification,
discriminant analysis, 151–160

Predictions:
decision trees for, 161–167

prostate cancer data example, 170–179
market basket analysis, income

prediction, 227–234
Predictor variables:

logistic regression, 84–85
naive Bayesian analysis, delayed

airplanes data, 128–130
penalty-based variable selection, LASSO

algorithm, 73–82
standard linear regression, automobile

fuel efficiency example, 45–47
Preprocessing of data:

alumni donations case study, 17–31
birth data case study, 7–17
case studies in, 7–39
orange juice sales data case study, 31–39
text data, 258–271

Price variables, linear regression, Toyota
used-car prices example, 48–51

Principal components analysis (PCA):
European protein consumption example,

238–243
factor models, dimension reduction,

237–246
monthly U.S. unemployment rates

example, 243–246
multicollinear regressions, partial least

squares, 254–256
multicollinear regressions, 247–256

Probabilities:
Bayesian analysis, categorical predictor

variables, 126–130
binary classification and, 108–114
decision problems, 108–109
logistic regression, 84–85

loan acceptance case study, 100–102
market basket analysis, 221

Probability cutoff, logistic regression,
delayed airplanes data, 93–100

Probit model, logistic regression, 85
Prostate cancer data:

decision tree analysis, 167–179
least absolute shrinkage and selection

operator algorithm and, 74–78
Pruning, decision tree predictions, prostate

cancer data, 171–179
Purchase coincidence, market basket

analysis, 220–234
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p-values, decision tree partitioning,
chi-square automatic interaction
detection, 188

Quadratic discriminant function,
classification, discriminant analysis,
152–160

Query, k -nearest neighbor algorithm,
116–125

Random attribute selection, bagging
classification and, 190–191

randomForest method, ensemble
classification, 190–191

Random noise, decision tree predictions,
prostate cancer data, 170–171

rattle library, graphical user interface,
194–195

Rcmdr software, graphical user interface,
194–195

Receiver-operating characteristic (ROC)
function:

German credit data, 109–114
logistic regression, delayed airplanes

data, 93–100
sensitivity and specificity, 109
text data mining, 261–266

Recommender systems, market basket
analysis, 220–221

Recursive partitioning:
in decision trees, 163–167
rpart software, 185–186

Reference trees, decision tree analysis,
prostate cancer data, 177–179

Regression. See Linear regression; Logistic
regression

Regression coefficients, logistic regression,
85

Regression deviance:
decision tree partitioning, 163–167
standard linear regression, 40

Regression trees:
basic characteristics, 161–167
chi-square automatic interaction

detection, 186–188
motorcycle acceleration example,

179–182
software packages for, 185–195

Removal rules, text data mining, 258–271

Residuals, standard linear regression, 40
Toyota used-car prices example, 51–52

Restaurant reviews example, text data
mining, 261–266

R function:
logistic regression, 87
penalty-based variable selection, LASSO

algorithm, 73–82
standard linear regression, 43

automobile fuel efficiency example,
44–47

statistical modeling parsimony, false
discovery and, 70

Ridge regression, 72–82
R in a Nutshell: A Desktop Quick Reference,

data preprocessing case study, 7–17
Root mean square error:

multicollinear regressions, partial least
squares, monthly U.S. unemployment
rates example, 254–256

standard linear regression, 42–43
automobile fuel efficiency example,

46–47
Toyota used-car prices example,

50–51
rpart software, tree construction using,

185–186
R−square:

multicollinear regressions, partial least
squares, 249–251

standard linear regression, 40–41
R statistical software packages, 6

arules package, 223–228
cluster package, 217
decision tree construction, 163–167,

185–186
pruning applications, 171–179

igraph package, 272, 274–278
local polynomial regression, locfit R

library, 58–65
logistic regression:

death penalty data, 89–92
German credit data, 103–107

mixOmics package, 249
mixtools package, 207
multinomial logistic regression, 134
preprocessing case studies using, 7

birth data case study, 10–17
randomForest package, 191
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R statistical software packages (Continued)
rattle package, graphical user interface,

193–195
statnet package, 272, 278–292
stats package, 197, 217
support vector machine classification,

192
textir library, 260–268

Sales data preprocessing, orange juice case
study, 31–39

Scale of data mining, defined, 2
Scatter plots:

cluster analysis, European protein
consumption example, 199–201

data preprocessing:
alumni donations case study, 28–31
birth data case study, 11–17
orange juice case study, 34–39

decision trees, motorcycle acceleration
example, 179–182

factor models, European protein
consumption example, 239–243

standard linear regression, Toyota
used-car prices example, 51–52

Sensitivity, classification problems, 109
Simple triplet matrix, multinomial logistic

regression, 147–149
Single-linkage clustering, 213–217
“Slant” analysis, text data mining, 268–271
Smoothed density plots, data preprocessing,

orange juice case study, 31–39
Smoothing function, local polynomial

regression:
histogram smoothing, 58
nitric oxide emissions, 62–65

Soft counts, cluster analysis,
expectation-maximization algorithm,
204–207

Software systems:
local polynomial regression, 58–65
multinomial logistic regression, 134
network data mining, 272
regression and classification trees,

185–195
Specificity, classification problems, 109
Speed of data mining, defined, 2
Splitting of data:

decision tree partitioning, 163–167

chi-square automatic interaction
detection, 188

decision tree predictions, prostate cancer
data example, 170–179

Square matrices, linear regression, mean
square error overfitting, 54

Squashing function, neural networks, 193
Standard linear regression. See Linear

regression
Statistical analysis:

data mining and limitations of, 2–3
parsimony, false discovery, 67–70

Statistical inference, logistic regression,
85–86

statnet software package, 272, 278–292
stats software package, 197
Stemming, text data, 258–271
Stepwise regression techniques, standard

linear regression, 42–43
Stop words, text data mining, 258–271
Sum of squares criterion:

cluster analysis, monthly U.S.
unemployment rates example,
201–204

deviance node impurity, decision trees,
185–186

standard linear regression, 40
Supervised learning, defined, 3
Support vector machines (SVM),

classification using, 192

tapply function:
alumni donations case study, 22–31
birth data preprocessing case study,

14–17
Targeted marketing, market basket analysis,

220–221
Terminal node, decision trees, 162
Test point, k -nearest neighbor algorithm,

116–125
Text data mining:

Gentzkow/Shapiro “slant” and partial
least squares estimates, 268–271

inverse multinomial logistic regression,
259–260

political sentiment example, 266–268
restaurant reviews example, 261–266
sentiment analysis, 258–271

textir library, 260–268
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Time sequence plots:
cluster analysis, monthly U.S.

unemployment rates example,
201–204

orange juice sales data preprocessing,
31–39

Tokenization, text data, 258–271
Toyota used-car prices example, linear

regression, 47–51
Tree-logic, predictions using, 161–162
tree software (R software system), 185–186
Tumor log volume prediction, least

absolute shrinkage and selection
operator algorithm and, 74–78

Univariate autoregressive model,
multicollinear regressions, partial least
squares, monthly U.S. unemployment
rates example, 253–256

Unsupervised learning, defined, 2–3
Update step, k -means clustering, 197

Vector autoregressive (VAR) models,
multicollinear regressions, partial least
squares, 251–253

V-fold cross-validation, decision tree
analysis, prostate cancer data,
177–179

VGAM software package, multinomial
logistic regression, forensic glass case
study, 134–147

Weight functions:
ensemble classification, 190–191
local polynomial regression, 56–65

Zero correlation, partial least squares,
multicollinear regressions, 248–256
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